Acta Geographica Sinica ›› 2021, Vol. 76 ›› Issue (3): 626-644.doi: 10.11821/dlxb202103010

• Environment and Ecosystem Services • Previous Articles     Next Articles

Spatial identification and scenario simulation of ecotone distribution in China

FAN Zemeng1,2,3()   

  1. 1. State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
    2. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
    3. Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
  • Received:2020-10-19 Revised:2021-03-09 Online:2021-03-25 Published:2021-05-25
  • Supported by:
    National Key R&D Program of China(2018YFC0507202);National Key R&D Program of China(2017YFA0603702);National Natural Science Foundation of China(41971358);National Natural Science Foundation of China(41930647);Strategic Priority Research Program of the Chinese Academy of Sciences(XDA20030203);Innovation Research Project of State Key Laboratory of Resources and Environment Information System, CAS


Explicitly identifying the ecotone distribution and scenario change is of important significance to understand the response of ecosystem to climatic change. In this paper, a spatial identification method was developed to analyze the ecotone distribution in terms of the improved Holdridge life zone (iHLZ) model. Based on the climatic observation data of 782 weather stations of China in the T0 (1981-2010) period, and the climatic scenario data of IPCC CMIP5 RCP2.6, RCP4.5 and RCP8.5 in T1 (2011-2040), T2 (2041-2070) and T3 (2071-2100), the ecotones distribution and scenarios in China were simulated in the four periods. Moreover, a spatial shift trend model of mean center was introduced to quantitatively calculate the shift direction and distance of each ecotone type during the periods from T0 to T3. The simulated results show that there are 41 ecotone types in China, accounting for 18% of the total land area of China. The ecotones of cold temperate grassland / humid forest and warm temperate arid forest (564238.5 km2), cold temperate humid forest and warm temperate arid / humid forest (566549.75 km2), and northern humid / humid forest and cold temperate humid forest (525750.25 km2) are the main ecotone types, accounting for 35% of the total area of ecotones in China. Between T0 and T3, the area in the ecotone of cold temperate desert shrub and warm temperate desert shrub / thorn steppe will increase at a rate of 4% per decade, which is up by 3604.2, 10063.1 and 17242 km2 per decade under the RCP2.6, RCP4.5 and RCP8.5 scenarios, respectively. The cold ecotones will transform to the warm humid ecotones in the future. The average shift distance of mean center in the ecotone of north wet forest and cold temperate desert shrub / thorn grassland will be generally larger than that of other ecotones, whose mean center will move to the northeast, and the shift distance will be more than 150 km between T0 and T3. In addition, with a gradual increase of temperature and precipitation, the ecotones in northern China will show a shifting northward trend, while the ecotones in southern China will decrease gradually, and their mean center move to the high-altitude areas. The effects of climate change on ecotones will show an increasing trend in China, especially in the Qinghai-Tibet Plateau.

Key words: ecotone, mean center, spatial identification method, scenario simulation, China