Acta Geographica Sinica ›› 2021, Vol. 76 ›› Issue (3): 584-594.doi: 10.11821/dlxb202103007
• Climate Change and Land Surface Processes • Previous Articles Next Articles
ZHANG Yongqiang1(), KONG Dongdong2, ZHANG Xuanze1, TIAN Jing1, LI Congcong1,3
Received:
2020-05-21
Online:
2021-03-25
Published:
2021-05-25
Supported by:
ZHANG Yongqiang, KONG Dongdong, ZHANG Xuanze, TIAN Jing, LI Congcong. Impacts of vegetation changes on global evapotranspiration in the period 2003-2017[J].Acta Geographica Sinica, 2021, 76(3): 584-594.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Zhang Y Q, Leuning R, Hutley L B, et al. Using long-term water balances to parameterize surface conductances and calculate evaporation at 0.05 degrees spatial resolution. Water Resources Research, 2010,46(5). DOI: 10.1029/2009wr008716. |
[2] | Zhang Y Q, Chiew F H S, Zhang L, et al. Validation of modis-based annual actual evapotranspiration against water balance estimates in murray-darling basin. 2007, 2639-2644. http://hdl.handle.net/102.100.100/125980.. 2021-01-27. |
[3] | Li J, Chen Y D, Zhang L, et al. Future changes in floods and water availability across China: Linkage with changing climate and uncertainties. Journal of Hydrometeorology, 2016,17(4):1295-1314. |
[4] | Wuebbles D, Meehl G, Hayhoe K, et al. CMIP5 climate model analyses: Climate extremes in the United States. Bulletin of the American Meteorological Society, 2014,95(4):571-583. |
[5] | Wang L, Chen W. A CMIP5 multimodel projection of future temperature, precipitation, and climatological drought in China. International Journal of Climatology, 2014,34(6):2059-2078. |
[6] | Li J, Chen Y D, Gan T Y, et al. Elevated increases in human-perceived temperature under climate warming. Nature Climate Change, 2018,8(1):43-47. |
[7] | Chen Y D, Li J, Zhang Q, et al. Projected changes in seasonal temperature extremes across China from 2017 to 2100 based on statistical downscaling. Global and Planetary Change, 2018,166:30-40. |
[8] | Penman H L. Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1948,193(1032):120-145. |
[9] |
Monteith J L. Evaporation and environment. Symposia of the Society for Experimental Biology, 1965,19:205-234.
pmid: 5321565 |
[10] | Zhang Y Q, Kong D D, Gan R, et al. Coupled estimation of 500 m and 8-day resolution global evapotranspiration and gross primary production in 2002-2017. Remote Sensing of Environment, 2019,222:165-182. |
[11] |
Zhang Y Q, Pena-Arancibia J L, McVicar T R, et al. Multi-decadal trends in global terrestrial evapotranspiration and its components. Scientific Reports, 2016,6(1). DOI: 10.1038/srep19124.
doi: 10.1038/s41598-016-0002-7 pmid: 28442706 |
[12] | Leuning R, Zhang Y Q, Rajaud A, et al. A simple surface conductance model to estimate regional evaporation using MODIS leaf area index and the penman-monteith equation. Water Resources Research, 2008,44(10). DOI: 10.1029/2007wr006562. |
[13] | Qi Tianyao, Zhang Qiang, Wang Yue, et al. Spatiotemporal patterns of pan evaporation in 1960-2005 in China: Changing properties and possible causes: Changing properties and possible causes. Scientia Geographica Sinica, 2015,35(12):1599-1606. |
[ 祁添垚, 张强, 王月, 等. 1960—2005年中国蒸发皿蒸发量变化趋势及其影响因素分析. 地理科学, 2015,35(12):1599-1606.] | |
[14] | Han Songjun, Wang Shaoli, Yang Dawen. Agricultural influences on evaporation paradox in China. Transactions of the CSAE, 2010,26(10):1-8. |
[ 韩松俊, 王少丽, 杨大文. 农业活动对中国区域“蒸发悖论”规律的影响. 农业工程学报, 2010,26(10):1-8.] | |
[15] | Xie Ping, Long Huaiyu, Zhang Yangzhu, et al. Evaporation paradox in Yunnan Province. Journal of Irrigation and Drainage, 2016,35(9):81-87. |
[ 谢平, 龙怀玉, 张杨珠, 等. “蒸发悖论”在云南省的探讨. 灌溉排水学报, 2016,35(9):81-87.] | |
[16] | Cong Zhentao, Ni Guangheng, Yang Dawen, et al. Evaporation paradox in China. Advances in Water Science, 2008,19(2):147-152. |
[ 丛振涛, 倪广恒, 杨大文, 等. “蒸发悖论”在中国的规律分析. 水科学进展, 2008,19(2):147-152.] | |
[17] | Lian X, Piao S L, Huntingford C, et al. Partitioning global land evapotranspiration using CMIP5 models constrained by observations. Nature Climate Change, 2018,8(7):640-646. |
[18] |
Sutanto S, Wenninger J, Coenders-Gerrits A, et al. Partitioning of evaporation into transpiration, soil evaporation and interception: A comparison between isotope measurements and a HYDRUS-1D model. Hydrology and Earth System Sciences, 2012,16(8):2605-2616.
doi: 10.5194/hess-16-2605-2012 |
[19] | Wang L X, Good S P, Caylor K K. Global synthesis of vegetation control on evapotranspiration partitioning. Geophysical Research Letters, 2014,41(19):6753-6757. |
[20] | Wang K, Dickinson R. A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Reviews of Geophysics, 2012,50(2). DOI: 10.1029/2011RG000373. |
[21] | Running S, Mu Q, Zhao M. MOD16A2 modis/terra net evapotranspiration 8-day L4 global 500 m sin grid v006. NASA EOSDIS Land Processes DAAC, 2017. DOI: 10.5067/MODIS/MOD16A2.006. |
[22] | Martens B, Gonzalez M D, Lievens H, et al. Gleam v3: Satellite-based land evaporation and root-zone soil moisture. Geoscientific Model Development, 2017,10(5):1903-1925. |
[23] | Jung M, Reichstein M, Bondeau A J B . Towards global empirical upscaling of fluxnet eddy covariance observations: Validation of a model tree ensemble approach using a biosphere model. Biogeosciences, 2009,6(10):2001-2013. |
[24] |
Jung M, Reichstein M, Ciais P, et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 2010,467(7318):951-954.
doi: 10.1038/nature09396 pmid: 20935626 |
[25] | Dong B, Dai A G. The uncertainties and causes of the recent changes in global evapotranspiration from 1982 to 2010. Climate Dynamics, 2017,49(1):279-296. |
[26] | Mueller B, Seneviratne S I, Jimenez C, et al. Evaluation of global observations-based evapotranspiration datasets and IPCC AR4 simulations. Geophysical Research Letters, 2011,38(6). DOI: 10.1029/2010GL046230. |
[27] | Schlosser C A, Gao X. Assessing evapotranspiration estimates from the second Global Soil Wetness Project (GSWP-2) simulations. Journal of Hydrometeorology, 2010,11(4):880-897. |
[28] | Gan R, Zhang Y Q, Shi H, et al. Use of satellite leaf area index estimating evapotranspiration and gross assimilation for australian ecosystems. Ecohydrology, 2018,11(5):e1974. DOI: 10.1002/eco.1974. |
[29] |
Song X P, Hansen M C, Stehman S V, et al. Global land change from 1982 to 2016. Nature, 2018,560(7720):639-643.
doi: 10.1038/s41586-018-0411-9 pmid: 30089903 |
[30] | Sterling S M, Ducharne A, Polcher J. The impact of global land-cover change on the terrestrial water cycle. Nature Climate Change, 2012,3(4):385-390. |
[31] | Li G, Zhang F M, Jing Y S, et al. Response of evapotranspiration to changes in land use and land cover and climate in China during 2001-2013. Science of the Total Environment, 2017,596:256-265. |
[32] | Li C C, Zhang Y Q, Shen Y J, et al. LUCC-driven changes in gross primary production and actual evapotranspiration in northern China. Journal of Geophysical Research: Atmospheres, 2020, 125(6): e2019JD031705. DOI: 10.1029/2019JD031705. |
[33] | Zhao M S, Heinsch F A, Nemani R R, et al. Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sensing of Environment, 2004,95(2):164-176. |
[34] | Ershadi A, McCabe M F, Evans J P , et al. Effects of spatial aggregation on the multi-scale estimation of evapotranspiration. Remote Sensing of Environment, 2013,131:51-62. |
[35] | Sulla-Menashe D, Gray J M, Abercrombie S P, et al. Hierarchical mapping of annual global land cover 2001 to present: The MODIS Collection 6 land cover product. Remote Sensing of Environment, 2019,222:183-194. |
[36] | C EPH. A perfect smoother. Analytical chemistry, 2003,75(14):3631-3636. |
[37] | Kong D D, Zhang Y Q, Gu X H, et al. A robust method for reconstructing global MODIS EVI time series on the Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 2019,155:13-24. |
[38] | Leuning R. A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant, Cell & Environment, 1995,18(4):339-355. |
[39] |
Yu Q, Zhang Y Q, Liu Y F, et al. Simulation of the stomatal conductance of winter wheat in response to light, temperature and CO2 changes. Annals of Botany, 2004,93(4):435-441.
pmid: 14980969 |
[40] | Jia Shaofeng, Liang Yuan. Suggestions for strategic allocation of the Yellow River water resources under the new situation. Resources Science, 2020,42(1):29-36. |
[ 贾绍凤, 梁媛. 新形势下黄河流域水资源配置战略调整研究. 资源科学, 2020,42(1):29-36.] |
[1] | HUANG Jixia, ZHANG Tianyuan, CAO Yunfeng, GE Quansheng, YANG Linsheng. The evolution of navigation performance of Northeast Passage under the scenario of Arctic sea ice melting [J]. Acta Geographica Sinica, 2021, 76(5): 1051-1064. |
[2] | AMANTAI Nigenare, DING Jianli, GE Xiangyu, BAO Qingling. Variation characteristics of actual evapotranspiration and meteorological elements in the Ebinur Lake basinfrom 1960 to 2017 [J]. Acta Geographica Sinica, 2021, 76(5): 1177-1192. |
[3] | LIU Qing, YANG Yongchun, JIANG Xiaorong, CAO Wanpeng, LIU Xiaojie. An analysis of the multidimensional globalizing city networks based on global value chain: A case study of iPhone suppliers [J]. Acta Geographica Sinica, 2021, 76(4): 870-887. |
[4] | JIN Fengjun, YAO Zuolin, CHEN Zhuo. Development characteristics and construction prospects for an integrated economic zone in the South China Sea Region [J]. Acta Geographica Sinica, 2021, 76(2): 428-443. |
[5] | WEN Qingzhi, SUN Peng, ZHANG Qiang, YAO Rui. A multi-scalar drought index for global warming: The non-stationary standardized precipitation evaporation index (NSPEI) and spatio-temporal patterns of future drought in China [J]. Acta Geographica Sinica, 2020, 75(7): 1465-1482. |
[6] | LIU Hui, GU Weinan, LIU Weidong, WANG Jiao'e. The influence of China-Europe Express on the production system of enterprises:A case study of TCL Poland Plant [J]. Acta Geographica Sinica, 2020, 75(6): 1159-1169. |
[7] | ZUO Xiuling, SU Fenzhen, ZHANG Yu, WU Wenzhou, WU Di. Identifying priority conservation areas for South China Sea Islands under the global climate change [J]. Acta Geographica Sinica, 2020, 75(3): 647-661. |
[8] | MA Enpu, CAI Jianming, LIN Jing, GUO Hua, HAN Yan, LIAO Liuwen. Spatio-temporal evolution of global food security pattern and its influencing factors in 2000-2014 [J]. Acta Geographica Sinica, 2020, 75(2): 332-347. |
[9] | YU Guirui, LI Wenhua, SHAO Ming'an, ZHANG Yangjian, WANG Shaoqiang, NIU Shuli, HE Honglin, DAI Erfu, LI Fadong, MA Zeqing. Ecosystem science research and ecosystem management [J]. Acta Geographica Sinica, 2020, 75(12): 2620-2635. |
[10] | WU Xiangwen, ZANG Shuying, MA Dalong, REN Jianhua, LI Hao, ZHAO Guangying. Greenhouse gas fluxes from forest soil in permafrost regions of Greater Hinggan Mountains, Northeast China [J]. Acta Geographica Sinica, 2020, 75(11): 2319-2331. |
[11] | SUN Yizhong, YANG Jing, SONG Shuying, ZHU Jie, DAI Junjie. Modeling of multilevel vector cellular automata and its simulation of land use change [J]. Acta Geographica Sinica, 2020, 75(10): 2164-2179. |
[12] | LIU Yujie, GE Quansheng, DAI Junhu. Research progress in crop phenology under global climate change [J]. Acta Geographica Sinica, 2020, 75(1): 14-24. |
[13] | RUAN Hongwei,YU Jingjie. Changes in land cover and evapotranspiration in the five Central Asian countries from 1992 to 2015 [J]. Acta Geographica Sinica, 2019, 74(7): 1292-1304. |
[14] | LI Chaojun,WANG Shijie,BAI Xiaoyong,TAN Qiu,LI Huiwen,LI Qin,DENG Yuanhong,YANG Yujie,TIAN Shiqi,HU Zeyin. Estimation of carbonate rock weathering-related carbon sink in global major river basins [J]. Acta Geographica Sinica, 2019, 74(7): 1319-1332. |
[15] | YANG Fan,HE Fanneng,LI Meijiao,LI Shicheng. Reliability assessment of global historical forest data in China [J]. Acta Geographica Sinica, 2019, 74(5): 923-934. |