Acta Geographica Sinica ›› 2020, Vol. 75 ›› Issue (12): 2620-2635.doi: 10.11821/dlxb202012006
• Discipline Development of IGSNRR, CAS: An 80th Anniversary Retrospective • Previous Articles Next Articles
YU Guirui(), LI Wenhua, SHAO Ming'an, ZHANG Yangjian(
), WANG Shaoqiang, NIU Shuli, HE Honglin, DAI Erfu, LI Fadong, MA Zeqing
Received:
2020-10-22
Revised:
2020-12-11
Online:
2020-12-25
Published:
2021-02-25
Contact:
ZHANG Yangjian
E-mail:yugr@igsnrr.ac.cn;zhangyj@igsnrr.ac.cn
YU Guirui, LI Wenhua, SHAO Ming'an, ZHANG Yangjian, WANG Shaoqiang, NIU Shuli, HE Honglin, DAI Erfu, LI Fadong, MA Zeqing. Ecosystem science research and ecosystem management[J].Acta Geographica Sinica, 2020, 75(12): 2620-2635.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Yu G R, Wen X F, Sun X M, et al. Overview of ChinaFLUX and evaluation of its eddy covariance measurement. Agricultural and Forest Meteorology, 2006,137(3/4):125-137. |
[2] | Yu Guirui, Sun Xiaomin. Principles of Flux Measurement in Terrestrial Ecosystems. Beijing: Higher Education Press. 2006. |
[ 于贵瑞, 孙晓敏. 陆地生态系统通量观测的原理与方法. 北京: 高等教育出版社, 2006.] | |
[3] | Yu Guirui, Zhang Leiming, Sun Xiaomin. Progresses and prospects of Chinese terrestrial ecosystem flux observation and research network (ChinaFLUX). Progress in Geography, 2014,33(7):903-917. |
[ 于贵瑞, 张雷明, 孙晓敏. 中国陆地生态系统通量观测研究网络(ChinaFLUX)的主要进展及发展展望. 地理科学进展, 2014,33(7):903-917.] | |
[4] | Luo Tianxiang. Patterns of net primary productivity for Chinese major forest types and their mathematical models. Resources Science, 1996,18(5):41. |
[ 罗天祥. 中国主要森林类型生物生产力格局及其数学模型. 资源科学, 1996,18(5):41.] | |
[5] | Yu G R, Li X R, Wang Q F, et al. Carbon storage and its spatial pattern of terrestrial ecosystem in China. Journal of Resources and Ecology, 2010,1(2):97-109. |
[6] | Cao Mingkui, Yu Guirui, Liu Jiyuan, et al. Multi scale experimental observation and cross scale mechanism simulation of carbon cycle in terrestrial ecosystem. Scientia Sinica Terrae, 2004,34(Suppl.2):1-14. |
[ 曹明奎, 于贵瑞, 刘纪远, 等. 陆地生态系统碳循环的多尺度试验观测和跨尺度机理模拟. 中国科学(D辑: 地球科学), 2004,34(Suppl.2):1-14.] | |
[7] | Cao M K, Prince S D, Li K R, et al. Response of terrestrial carbon uptake to climate interannual variability in China. Global Change Biology, 2003,9(4):536-546. |
[8] | Hu Zhongmin, Fan Jiangwen, Zhong Huaping, et al. Temporal and spatial variability of aboveground productivity along precipitation gradient in temperate grassland of China. Scientia Sinica Terrae, 2006(12), 1154-1162. |
[ 胡中民, 樊江文, 钟华平, 等. 中国温带草地地上生产力沿降水梯度的时空变异性. 中国科学(D辑: 地球科学), 2006(12):1154-1162.] | |
[9] |
Yu G R, Chen Z, Piao S L, et al. High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. PNAS, 2014,111:4910-4915.
doi: 10.1073/pnas.1317065111 pmid: 24639529 |
[10] |
He N P, Liu C C, Piao S L, et al. Ecosystem traits linking functional traits to macroecology. Trends in Ecology and Evolution, 2019,34(3):200-210.
doi: 10.1016/j.tree.2018.11.004 pmid: 30527959 |
[11] |
Ma Z Q, Guo D L, Xu X L, et al. Evolutionary history resolves global organization of root functional traits. Nature, 2018,555(7694):94-97.
doi: 10.1038/nature25783 pmid: 29466331 |
[12] | Li Wenhua, Ouyang Zhiyun, Zhao Jingzhu. Research on Ecosystem Service Function. Beijing: China Meteorological Press, 2002. |
[ 李文华, 欧阳志云, 赵景柱. 生态系统服务功能研究. 北京: 气象出版社, 2002.] | |
[13] | Gu F X, Zhang Y D, Huang M, et al. Nitrogen deposition and its effect on carbon storage in Chinese forests during 1981-2010. Atmospheric Environment, 2015,123:171-179. |
[14] | Zhang L, Mao J F, Shi X Y, et al. Evaluation of the Community Land Model simulated carbon and water fluxes against observations over ChinaFLUX sites. Agricultural and Forest Meteorology, 2016,226/227:174-185. |
[15] |
Ge R, He H L, Ren X L, et al. Underestimated ecosystem carbon turnover time and sequestration under the steady state assumption: A perspective from long-term data assimilation. Global Change Biology, 2019,25(3):938-953.
doi: 10.1111/gcb.14547 pmid: 30552830 |
[16] | Zhang L, Luo Y Q, Yu G R, et al. Estimated carbon residence times in three forest ecosystems of eastern China: Applications of probabilistic inversion. Journal of Geophysical Research: Biogeosciences, 2010,115:G01010. Doi: 10.1029/2009jg001004. |
[17] |
Ren X L, He H L, Moore D J P, et al. Uncertainty analysis of modeled carbon and water fluxes in a subtropical coniferous plantation. Journal of Geophysical Research: Biogeosciences, 2013,118(4):1674-1688.
doi: 10.1002/2013JG002402 |
[18] | He H L, Liu M, Xiao X M, et al. Large-scale estimation and uncertainty analysis of gross primary production in Tibetan alpine grasslands. Journal of Geophysical Research: Biogeosciences, 2014,119(3):466-486. |
[19] | Ren X L, He H L, Zhang L, et al. Modeling and uncertainty analysis of carbon and water fluxes in a broad- leaved Korean pine mixed forest based on model-data fusion. Ecological Modelling, 2018,379:39-53. |
[20] | Zhu X J, Yu G R, He H L, et al. Geographical statistical assessments of carbon fluxes in terrestrial ecosystems of China: Results from upscaling network observations. Global and Planetary Change, 2014,118:52-61. |
[21] |
Lu F, Hu H F, Sun W J, et al. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. PNAS, 2018,115(16):4039-4044.
pmid: 29666317 |
[22] | Gao Y, Yu G R, Yang T T, et al. New insight into global blue carbon estimation under human activity in land-sea interaction area: a case study of China. Earth-Science Review, 2016,159:36-46. |
[23] |
Jia Y L, Yu G R, He N P, et al. Spatial and decadal variations in inorganic nitrogen wet deposition in China induced by human activity. Scientific Reports, 2014,4. Doi: 10.1038/srep03763.
doi: 10.1038/srep07592 pmid: 25534230 |
[24] | Gao Y, He N P, Yu G R, et al. Impact of external nitrogen and phosphorus input between 2006 and 2010 on carbon cycle in China seas. Regional Environmental Change, 2015,15(4):631-641. |
[25] |
Yu G R, Zhu X J, Fu Y L, et al. Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China. Global Change Biology, 2013,19(3):798-810.
pmid: 23504837 |
[26] |
Chen Z, Yu G R, Zhu X J, et al. Covariation between gross primary production and ecosystem respiration across space and the underlying mechanisms: A global synthesis. Agricultural and Forest Meteorology, 2015,203:180-190.
doi: 10.1016/j.agrformet.2015.01.012 |
[27] |
Zhang Y J, Yu G R, Yang J, et al. Climate- driven global changes in carbon use efficiency. Global Ecology and Biogeography, 2014,23(2):144-155.
doi: 10.1111/geb.12086 |
[28] |
Jia Y L, Yu G R, Gao Y N, et al. Global inorganic nitrogen dry deposition inferred from ground and space- based measurements. Scientific Reports, 2016,6:19810. Doi: 10.1038/srep19810.
doi: 10.1038/srep19810 pmid: 26813440 |
[29] | Yu G R, Jia Y L, He N P, et al. Stabilization of atmospheric nitrogen deposition in China over the past decade. Nature Geoscience, 2019,12:424-429. |
[30] |
Xia J Y, Niu S L, Ciais P, et al. Joint control of terrestrial gross primary productivity by plant phenology and physiology. PNAS, 2015,112(9):2788-2793.
doi: 10.1073/pnas.1413090112 pmid: 25730847 |
[31] | Niu S L, Fu Z, Luo Y Q, et al. Interannual variability of ecosystem carbon exchange: From observation to prediction. Global Ecology and Biogeography, 2017,26(11):1225-1237. |
[32] |
Hu Z M, Guo Q, Li S G, et al. Shifts in the dynamics of productivity signal ecosystem state transitions at the biomescale. Ecology Letters, 2018,21(10):1457-1466.
doi: 10.1111/ele.13126 pmid: 30019373 |
[33] |
Li Y, Niu S L, Yu G R. Aggravated phosphorus limitation on biomass production under increasing nitrogen loading: A meta-analysis. Global Change Biology, 2016,22(2):934-943.
doi: 10.1111/gcb.13125 pmid: 26463578 |
[34] |
Niu S L, Classen A T, Dukes J S, et al. Global patterns and substrate-based mechanisms of the terrestrial nitrogen cycle. Ecology Letters, 2016,19(6):697-709.
doi: 10.1111/ele.12591 pmid: 26932540 |
[35] | Tian D S, Reich P B, Chen H Y H, et al. Global changes alter plant multi-element stoichiometric coupling. New Phytologist, 2018,221(2):807-817. |
[36] | Kou L, Jiang L, Fu X L, et al. Nitrogen deposition increases root production and turnover but slows root decomposition in Pinus elliottii plantations. New Phytologist, 2018,218:1450-1461. |
[37] | Kou L, Jiang L, Hättenschwiler S, et al. Diversity-decomposition relationships in forests worldwide. eLife Sciences, 2020,9:e55813. Doi: 10.7554/eLife.55813. |
[38] |
Qiao N, Schaefer D, Blagodatskaya E, et al. Labile carbon retention compensates for CO2 released by priming in forest soils. Global Change Biology, 2014,20(6):1943-1954.
doi: 10.1111/gcb.12458 pmid: 24293210 |
[39] |
Song M H, Guo Y, Yu F H, et al. Shifts in priming partly explain impacts of long- term nitrogen input in different chemical forms on soil organic carbon storage. Global Change Biology, 2018,20:1943-1954.
doi: 10.1111/gcb.12458 pmid: 24293210 |
[40] |
Zhang G L, Zhang Y J, Dong J W, et al. Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011. PNAS, 2013,110(11):4309-4314.
doi: 10.1073/pnas.1210423110 pmid: 23440201 |
[41] |
Quan Q, Tian D S, Luo Y Q, et al. Water scaling of ecosystem carbon cycle feedback to climate warming. Science Advances, 2019, 5(8): eaav1131. Doi: 10.1126/sciadv.aav1131.
doi: 10.1126/sciadv.aav1131 pmid: 31457076 |
[42] | Zhou Yurong, Yu Zhenliang, Zhao Shidong. Carbon storage and budget of major chinese forest types. Acta Phytoecologica Sinica, 2000(5):518-522. |
[ 周玉荣, 于振良, 赵士洞. 我国主要森林生态系统碳贮量和碳平衡. 植物生态学报, 2000(5):518-522.] | |
[43] |
Hu Z M, Shi H, Cheng K L, et al. Joint structural and physiological control on the inter-annual variation in productivity in a temperate grassland: A data-model comparison. Global Change Biology, 2018,24(7):2965-2979.
doi: 10.1111/gcb.14274 pmid: 29665249 |
[44] | Fan Jiangwen, Zhong Huaping, Liang Biao, et al. Carbon stock in grassland ecosystem and its affecting factors. Grassland of China, 2003(6):52-59. |
[ 樊江文, 钟华平, 梁飚, 等. 草地生态系统碳储量及其影响因素. 中国草地, 2003(6):52-59.] | |
[45] | Wang Shaoqiang, Zhou Chenghu, Li Kerang, et al. Analysis on Spatial Distribution Characteristics of Soil Organic Carbon Reservoir in China. Acta Geographica Sinica, 2000(5):533-544. |
[ 王绍强, 周成虎, 李克让, 等. 中国土壤有机碳库及空间分布特征分析. 地理学报, 2000(5):533-544.] | |
[46] | Kong D L, Ma C G, Zhang Q, et al. Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytologist, 2014,203(3):863-872. |
[47] |
Li L, Mccormack M L, Ma C G, et al. Leaf economics and hydraulic traits are decoupled in five species-rich tropical-subtropical forests. Ecology Letters, 2015,18(9):899-906.
doi: 10.1111/ele.12466 pmid: 26108338 |
[48] | Zhang Xianzhou, Yang Yongping, Piao Shilong, et al. Ecological change on the Tibetan Plateau. Chinese Science Bulletin, 2015,60(32):3048-3056. |
[ 张宪洲, 杨永平, 朴世龙, 等. 青藏高原生态变化. 科学通报, 2015,60(32):3048-3056.] | |
[49] | Chen B X, Zhang X Z, Tao J, et al. The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau. Agricultural and Forest Meteorology, 2014,189/190:11-18. |
[50] | Zhang Xianzhou, He Yongtao, Shen Zhenxi, et al. Frontier of the ecological construction support the sustainable development in Tibet Autonomous Region. Bulletin of Chinese Academy of Sciences, 2015,30(3):306-312. |
[ 张宪洲, 何永涛, 沈振西, 等. 西藏地区可持续发展面临的主要生态环境问题及对策. 中国科学院院刊, 2015,30(3):306-312.] | |
[51] | He Yongtao, Zhang Xianzhou, Yu Chengqun. Coupling crop farming and pastoral system for regional development and their ecological effects on the Tibetan Plateau. Bulletin of Chinese Academy of Sciences, 2016,31(1):112-117. |
[ 何永涛, 张宪洲, 余成群. 西藏高原农牧系统耦合发展及其生态效应. 中国科学院院刊. 2016,31(1):112-117.] | |
[52] | Li Wenhua, et al. Theory, Method and Application of Ecosystem Service Function Value Evaluation. Beijing: China Renmin University Press, 2008. |
[ 李文华, 等. 生态系统服务功能价值评估的理论、方法与应用. 北京: 中国人民大学出版社, 2008.] | |
[53] | Li Wenhua, et al. Current Status of Ecology Research in China. Beijing: Science Press, 2013. |
[ 李文华, 等. 中国当代生态学研究. 北京: 科学出版社, 2013.] |
[1] | YANG Ren, PAN Yuxin. Spatial patterns, formation mechanism and coping strategies of rural vulnerability in China at the county level [J]. Acta Geographica Sinica, 2021, 76(6): 1438-1454. |
[2] | WANG Keyi, LIU Xiaohong, ZENG Xiaomin, XU Guobao, ZHANG Lingnan, LI Chunyue. Stable nitrogen isotope in tree rings: Progresses, problems and prospects [J]. Acta Geographica Sinica, 2021, 76(5): 1193-1205. |
[3] | WANG Shujia, SUN Jiuxia. Construction and empirical research on the evaluation system of sustainable development of Chinese traditional villages [J]. Acta Geographica Sinica, 2021, 76(4): 921-938. |
[4] | CUI Yaoping, LI Nan, FU Yiming, CHEN Liangyu. Contribution of terrestrial carbon sink to future warming in China, the United States, Russia and Canada [J]. Acta Geographica Sinica, 2021, 76(1): 167-177. |
[5] | ZHANG Kun, LYU Yihe, FU Bojie, YIN Lichang, YU Dandan. The effects of vegetation coverage changes on ecosystem service and their threshold in the Loess Plateau [J]. Acta Geographica Sinica, 2020, 75(5): 949-960. |
[6] | ZHANG Jingjing, ZHU Wenbo, ZHU Lianqi, LI Yanhong. Multi-scale analysis of trade-off/synergy effects of forest ecosystem services in the Funiu Mountain Region [J]. Acta Geographica Sinica, 2020, 75(5): 975-988. |
[7] | HE Yanhua, WU Jianguo, ZHOU Guohua, ZHOU Bingbing. Discussion on rural sustainability and rural sustainability science [J]. Acta Geographica Sinica, 2020, 75(4): 736-752. |
[8] | LI Xunhuan, ZHOU Yang, CHEN Yufu. Theory and measurement of regional multidimensional poverty [J]. Acta Geographica Sinica, 2020, 75(4): 753-768. |
[9] | ZUO Xiuling, SU Fenzhen, ZHANG Yu, WU Wenzhou, WU Di. Identifying priority conservation areas for South China Sea Islands under the global climate change [J]. Acta Geographica Sinica, 2020, 75(3): 647-661. |
[10] | DENG Xiangzheng, JIN Gui, HE Shujin, WANG Chengxin, LI Zhaohua, WANG Zhanqi, SONG Malin, YANG Qingyuan, ZHANG Anlu, CHEN Jiancheng. Research progress and prospect on development geography [J]. Acta Geographica Sinica, 2020, 75(2): 226-239. |
[11] | LU Dadao, LIU Yansui, FANG Chuanglin, CHEN Mingxing, WANG Jiaoe, XI Jianchao. Development and prospect of human-economic geography [J]. Acta Geographica Sinica, 2020, 75(12): 2570-2592. |
[12] | HUANG Lin, ZHAI Jun, ZHU Ping, ZHENG Yuhan. Spatiotemporal evolution characteristics of livestock-carrying pressure in China and its implications for grassland ecosystem conservation pattern [J]. Acta Geographica Sinica, 2020, 75(11): 2396-2407. |
[13] | LI Ruiqian, LI Yongfu, HU Heng. Support of ecosystem services for spatial planning theories and practices [J]. Acta Geographica Sinica, 2020, 75(11): 2417-2430. |
[14] | HUANG Muyi, YUE Wenze, FANG Bin, FENG Shaoru. Scale response characteristics and geographic exploration mechanism of spatial differentiation of ecosystem service values in Dabie Mountain area, central China from 1970 to 2015 [J]. Acta Geographica Sinica, 2019, 74(9): 1904-1920. |
[15] | LIU Licheng, LIU Chunfang, WANG Chuan, LI Pengjie. Supply and demand matching of ecosystem services in loess hilly region: A case study of Lanzhou [J]. Acta Geographica Sinica, 2019, 74(9): 1921-1937. |