Acta Geographica Sinica ›› 2020, Vol. 75 ›› Issue (11): 2362-2379.doi: 10.11821/dlxb202011007
• Land Use and Agricaltural Development • Previous Articles Next Articles
SONG Xiaoqing1,2(), SHEN Yajing1, WANG Xiong1, LI Xinyi1
Received:
2020-05-06
Revised:
2020-08-27
Online:
2020-11-25
Published:
2021-01-25
Supported by:
SONG Xiaoqing, SHEN Yajing, WANG Xiong, LI Xinyi. Vulnerability to biological disasters: A novel field of cultivated land use transition research[J].Acta Geographica Sinica, 2020, 75(11): 2362-2379.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Assessment index system of cultivated land use vulnerability to biological disasters
脆弱性 | 指标名称 | 指标属性 | 指标涵义 | 评价方法 | 单位 |
---|---|---|---|---|---|
暴露度 | 耕地压力 指数[ | + | 耕地稀缺性 | CLPI: 耕地压力指数; f: 粮食自给率; d: 人均粮食需求量; y: 粮食播面单产; r: 粮作比; mci: 复种指数; PerCLA: 人均耕地面积 | - |
劳均耕地 | - | 耕地规模经营水平 | PCLAEA: 劳均耕地; CLA: 耕地面积; EA: 农业从业人员 | hm2/人 | |
城乡收入比 | + | 城乡差距 | RIUR: 城乡收入比; IU: 城镇居民家庭人均可支配收入; IR: 农村居民家庭人均纯收入 | - | |
敏感性 | 作物 多样性[ | - | 维持耕地生态系统功能的系统组分多样性水平 | Diversity: 作物多样性指数; Ci: 作物i播种面积占农作物播种面积的比例 | - |
耕地化肥使用强度 | + | 化学品对耕地生态系统的影响程度 | CFUI: 耕地化肥使用强度; ACFU: 化肥施用量(折纯量); CLA: 耕地面积 | kg/hm2 | |
地均生物灾害发生面积 | + | 生物灾害发生强度 | RBDA: 地均生物灾害发生面积; BDA: 作物病虫害等生物灾害发生面积; CLA: 耕地面积 | - | |
应对 能力 | 生物灾害防治率 | - | 生物灾害防治积极性 | RBDPCA: 地均生物灾害防治面积; BDPCA: 作物病虫害等生物灾害防治面积; TSAC: 农作物播种面积 | - |
生物灾害防治失控率 | + | 生物灾害防治能力 | FRBDPC: 生物灾害防治失控率; BDA: 作物病虫害等生物灾害发生面积; BDPCA: 作物病虫害等生物灾害防治面积 | - | |
生物灾害损失挽回率 | - | 生物灾害防治效率 | RRGL: 粮食生物灾害损失挽回率; RGL: 粮食生物灾害损失挽回量; AGL: 粮食生物灾害实际损失量 | - |
Tab. 2
Variables in the panel data regression model and their definitions of cultivated land use vulnerability to biological disasters
变量 | 变量类型 | 变量含义 | 变量属性 | 单位 |
---|---|---|---|---|
CLVBD | 因变量 | 耕地利用生物灾害脆弱性 | - | - |
Temp | 自变量 | 气温 | 控制变量 | oC |
Precip | 降水量 | mm | ||
ProLand | 土地生产率,即单位耕地面积种植业增加值 | 万元/hm2 | ||
ProLabor | 劳动生产率,即单位农业从业人员种植业增加值 | 万元/人 | ||
PerGDP | 人均GDP | 核心变量 | 万元/人 | |
PerGDP2 | 人均GDP的二次方 | (万元/人)2 |
Tab. 3
Statistics of variables in the panel data regression model of cultivated land use vulnerability to biological disasters
变量 | 均值 | 中间值 | 最大值 | 最小值 | 标准差 | 横截面数 |
---|---|---|---|---|---|---|
CLVBD | 28.67 | 28.25 | 50.59 | 13.34 | 7.05 | 870 |
Temp | 14.29 | 15.10 | 25.40 | 4.20 | 5.07 | 870 |
Precip | 901.61 | 787.05 | 2939.70 | 74.90 | 525.08 | 870 |
ProLand | 1.37 | 0.89 | 8.39 | 0.04 | 1.39 | 870 |
ProLabor | 0.62 | 0.41 | 3.48 | 0.04 | 0.58 | 870 |
PerGDP | 2.04 | 1.04 | 12.90 | 0.06 | 2.33 | 870 |
PerGDP2 | 9.55 | 1.07 | 166.39 | 0.00 | 20.65 | 870 |
Tab. 4
Coefficients of variables in the panel data regression model of cultivated land use vulnerability to biological disasters
自变量名称 | 自变量属性 | 参数估计值 | 标准差 | t值 | P值 |
---|---|---|---|---|---|
Temp | 控制变量 | -0.252004 | 0.244870 | -1.029134 | 0.3037 |
Precip | 0.000069 | 0.000621 | 0.111802 | 0.9110 | |
ProLand | 2.397000 | 0.232688 | 10.30136 | 0.0000 | |
ProLabor | -3.820744 | 0.601890 | -6.347908 | 0.0000 | |
PerGDP | 核心变量 | 1.570417 | 0.382706 | 4.103459 | 0.0000 |
PerGDP2 | -0.066274 | 0.025634 | -2.585370 | 0.0099 | |
a | 28.72717 | 3.642856 | 7.885891 | 0.0000 |
Tab. 5
Comparison of the inverted U-shaped curves of transition in cultivated land use vulnerability to biological disasters in provincial control groups in China between 1988 and 2017
对照组 | 省级行政区 名称 | 耕地资源禀赋(hm2/人) | 自然环境 因素 | 经济社会发展 水平(万元/人) | 转型拐点特征值 | ||
---|---|---|---|---|---|---|---|
人均GDP (万元/人) | 脆弱性值 (%) | 曲率 | |||||
对照组1 | 北京市 | 0.43 | 黄淮海平原 | 4.48 | 8.56 | 34.82 | 0.35 |
河北省 | 0.43 | 1.66 | 2.60 | 29.21 | 1.70 | ||
对照组2 | 上海市 | 0.32 | 长江中下游地区 | 4.95 | 5.61 | 39.93 | 0.41 |
江苏省 | 0.30 | 2.91 | 4.67 | 33.80 | 0.58 | ||
对照组3 | 浙江省 | 0.31 | 长江中下游地区 | 3.05 | 2.53 | 31.16 | 0.76 |
江西省 | 0.30 | 1.30 | 1.76 | 24.71 | 2.25 |
Tab. 6
Contributions of indices to transition in cultivated land use vulnerability to biological disasters in agricultural zones in China between 2010 and 2017 (%)
地区名称 | 脆弱 性变化 幅度 | 因子贡献 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
暴露度 | 敏感性 | 应对能力 | |||||||||||
小计 | 耕地压 力指数(+) | 劳均 耕地(-) | 城乡收 入比(+) | 小计 | 作物多样性(-) | 化肥使用强度(+) | 生物灾害发生强度(+) | 小计 | 生物灾害防治率(-) | 生物灾害 防治失控率(+) | 生物灾害 损失挽回率(-) | ||
全国 | -2.91 | 1.13 | 0.00 | 0.21 | 0.92 | -0.35 | -0.14 | -0.23 | 0.03 | 0.22 | 0.00 | 0.13 | 0.08 |
东北平原区 | -3.06 | 5.26 | 0.01 | -0.04 | 5.28 | -3.93 | -3.63 | -0.40 | 0.11 | -0.33 | -1.02 | 10.09 | -9.41 |
黄淮海 平原区 | -4.59 | 1.71 | 1.26 | -0.21 | 0.66 | -0.74 | -0.09 | -0.57 | -0.08 | 0.04 | 0.00 | -0.08 | 0.12 |
长江中 下游地区 | -5.93 | 0.49 | -0.08 | 0.10 | 0.46 | 0.46 | -0.07 | 0.22 | 0.31 | 0.05 | 0.00 | 0.02 | 0.04 |
华南区 | -4.30 | 0.71 | -0.01 | -0.11 | 0.83 | -0.05 | -0.13 | -0.09 | 0.17 | 0.35 | 0.00 | 0.04 | 0.31 |
四川盆地及周边地区 | -6.36 | 0.95 | 0.00 | 0.35 | 0.59 | -0.02 | -0.02 | 0.00 | 0.00 | 0.07 | 0.00 | 0.06 | 0.01 |
云贵高原区 | -1.38 | 7.36 | 0.01 | 2.77 | 4.59 | -7.78 | -5.33 | -2.43 | -0.02 | 1.42 | 0.31 | -0.22 | 1.33 |
黄土高原区 | -1.46 | 1.80 | 0.00 | 0.10 | 1.70 | -1.74 | -0.51 | -1.23 | -0.01 | 0.95 | 0.00 | 0.83 | 0.12 |
北方干旱半干旱区 | -0.92 | 1.07 | 0.00 | -0.02 | 1.09 | -0.51 | -0.74 | 0.23 | 0.00 | 0.44 | 0.00 | 0.17 | 0.39 |
[1] | Long Hualou. Land use transition: A new integrated approach of land use/cover change study. Geography and Geo-Information Science, 2003,19(1):87-90. |
[ 龙花楼. 土地利用转型: 土地利用/覆被变化综合研究的新途径. 地理与地理信息科学, 2003,19(1):87-90.] | |
[2] | Grainger A. National land use morphology: Patterns and possibilities. Geography, 1995,80(3):235-245. |
[3] |
Lambin E F, Meyfroidt P. Land use transitions: Socio- ecological feedback versus socio-economic change. Land Use Policy, 2010,27(2):108-118.
doi: 10.1016/j.landusepol.2009.09.003 |
[4] |
Song Xiaoqing. Discussion on land use transition research framework. Acta Geographica Sinica, 2017,72(3):471-487.
doi: 10.11821/dlxb201703009 |
[ 宋小青. 论土地利用转型的研究框架. 地理学报, 2017,72(3):471-487.] | |
[5] |
Li L C, Chhatre A, Liu J L. Multiple drivers and pathways to China's forest transition. Forest Policy and Economics, 2019,106:101962. Doi:org/ 10.1016/j.forpol.2019.101962.
doi: 10.1016/j.forpol.2019.101962 |
[6] | Mather A S. Global Forest Resources. London: Belhaven, 1990. |
[7] | Mather A S. The forest transition. Area, 1992,24(4):367-379. |
[8] | Mather A S, Fairbairn J, Needle C L. The course and drivers of the forest transition: The case of France. Area, 1999,15(1):65-90. |
[9] |
Mather A S, Needle C L. The forest transition: A theoretical basis. Area, 1998,30(2):117-124.
doi: 10.1111/area.1998.30.issue-2 |
[10] |
Bertoni D, Aletti G, Ferrandi G, et al. Farmland use transitions after the CAP greening: A preliminary analysis using markov chains approach. Land Use Policy, 2018,79:789-800.
doi: 10.1016/j.landusepol.2018.09.012 |
[11] | Ge D Z, Wang Z H, Tu S S, et al. Coupling analysis of greenhouse-led farmland transition and rural transformation development in China's traditional farming area: A case of Qingzhou City. Land Use Policy, 2019,86:113-125. |
[12] |
Ge D Z, Long H L, Zhang Y N, et al. Farmland transition and its influences on grain production in China. Land Use Policy, 2018,70:94-105.
doi: 10.1016/j.landusepol.2017.10.010 |
[13] |
Lu X, Shi Y Y, Chen C L, et al. Monitoring cropland transition and its impact on ecosystem services value in developed regions of China: A case study of Jiangsu Province. Land Use Policy, 2017,69:25-40.
doi: 10.1016/j.landusepol.2017.08.035 |
[14] |
Ma L, Long H L, Tu S S, et al. Farmland transition in China and its policy implications. Land Use Policy, 2020,92:104470.
doi: 10.1016/j.landusepol.2020.104470 |
[15] |
Song Xiaoqing, Li Xinyi. Theoretical explanation and case study of regional cultivated land use function transition. Acta Geographica Sinica, 2019,74(5):992-1010.
doi: 10.11821/dlxb201905012 |
[ 宋小青, 李心怡. 区域耕地利用功能转型的理论解释与实证. 地理学报, 2019,74(5):992-1010.] | |
[16] |
Ernstson H, Leeuw S E V D, Redman C L, et al. Urban transitions: On urban resilience and human-dominated ecosystems. Ambio, 2010,39:531-545.
doi: 10.1007/s13280-010-0081-9 pmid: 21141773 |
[17] |
Long H L, Heilig G K, Li X B, et al. Socio-economic development and land-use change: Analysis of rural housing land transition in the transect of the Yangtse River, China. Land Use Policy, 2007,24(1):141-153.
doi: 10.1016/j.landusepol.2005.11.003 |
[18] |
Su K C, Hu B Q, Shi K F, et al. The structural and functional evolution of rural homesteads in mountainous areas: A case study of Sujiaying village in Yunnan province, China. Land Use Policy, 2019,88:104100. Doi: 10.1016/j.landusepol.2019.104100.
doi: 10.1016/j.landusepol.2019.104100 |
[19] | Wen Y Y, Zhang Z F, Liang D, et al. Rural residential land transition in the Beijing-Tianjin-Hebei region: Spatial-temporal patterns and policy implications. Land Use Policy, 2020,96:104700. Doi: 10.1016/j.landusepol.2020.104700. |
[20] | Long Hualou. Land use transition and land management. Geographical Research, 2015,34(9):1607-1618. |
[ 龙花楼. 论土地利用转型与土地资源管理. 地理研究, 2015,34(9):1607-1618.] | |
[21] | Long H L, Qu Y, Tu S S, et al. Development of land use transitions research in China. Journal of Geographical Sciences, 2020,30(7):1195-1214. |
[22] | Song Xiaoqing, Wu Zhifeng, Ouyang Zhu. Route of cultivated land transition research. Geographical Research, 2014,33(3):403-413. |
[ 宋小青, 吴志峰, 欧阳竹. 耕地转型的研究路径探讨. 地理研究, 2014,33(3):403-413.] | |
[23] | Field C B, Barros V R, Dokken D J, et al. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge and New York: Cambridge University Press, 2014. |
[24] |
Carrão H, Naumann G, Barbosa P. Mapping global patterns of drought risk: An empirical framework based on sub-national estimates of hazard, exposure and vulnerability. Global Environmental Change, 2016,39:108-124.
doi: 10.1016/j.gloenvcha.2016.04.012 |
[25] | Fitton N, Alexander P, Arnell N, et al. The vulnerabilities of agricultural land and food production to future water scarcity. Global Environmental Change, 2019,58:101944. Doi: 10.1016/j.gloenvcha.2019.101944. |
[26] |
Formetta G, Feyen L. Empirical evidence of declining global vulnerability to climate-related hazards. Global Environmental Change, 2019,57:101920. Doi: 10.1016/j.gloenvcha.2019.05.004.
doi: 10.1016/j.gloenvcha.2019.05.004 pmid: 31417231 |
[27] |
Mougou R, Mansour M, Iglesias A, et al. Climate change and agricultural vulnerability: A case study of rain-fed wheat in Kairouan, Central Tunisia. Regional Environmental Change, 2011,11(1):137-142.
doi: 10.1007/s10113-010-0179-4 |
[28] |
Savary S, Willocquet L, Pethybridge S J, et al. The global burden of pathogens and pests on major food crops. Nature Ecology & Evolution, 2019,3:430-439.
doi: 10.1038/s41559-018-0793-y pmid: 30718852 |
[29] | Ministry of Agriculture of the People's Republic of China. China Agriculture Yearbook (1989-2018). Beijing: China Agriculture Press, 1989-2018. |
[ 中华人民共和国农业农村部. 中国农业年鉴(1989—2018). 北京: 中国农业出版社, 1989—2018.] | |
[30] |
Carvajal-Yepes M, Cardwell K, Nelson A, et al. A global surveillance system for crop diseases: Global preparedness minimizes the risk to food supplies. Science, 2019,364(6447):1237-1239.
doi: 10.1126/science.aaw1572 pmid: 31249049 |
[31] |
Adger W N. Vulnerability. Global Environmental Change, 2006,16(3):268-281.
doi: 10.1016/j.gloenvcha.2006.02.006 |
[32] |
Foley J A, DeFries R, Asner G P, et al. Global consequences of land use. Science, 2005,309(22):570-574.
doi: 10.1126/science.1111772 |
[33] |
Song Xiaoqing, Ouyang Zhu. Route of multifunctional cultivated land management in China. Journal of Natural Resources, 2012,27(4):540-551.
doi: 10.11849/zrzyxb.2012.04.002 |
[ 宋小青, 欧阳竹. 中国耕地多功能管理的实践路径探讨. 自然资源学报, 2012,27(4):540-551.] | |
[34] |
Scherer L A, Verburg P H, Schulp C J E. Opportunities for sustainable intensification in European agriculture. Global Environmental Change, 2018,48:43-55.
doi: 10.1016/j.gloenvcha.2017.11.009 |
[35] |
Tilman D, Balzer C, Hill J. Global food demand and the sustainable intensification of agriculture. PNAS, 2011,108(50):20260-20264.
pmid: 22106295 |
[36] |
Stallman H R, James Jr H S. Determinants affecting farmers' willingness to cooperate to control pests. Ecological Economics, 2015,117:182-192.
doi: 10.1016/j.ecolecon.2015.07.006 |
[37] |
Ren C C Liu S van Grinsven H, et al. The impact of farm size on agricultural sustainability. Journal of Cleaner production, 2019,220:357-367.
doi: 10.1016/j.jclepro.2019.02.151 |
[38] |
Wu Y, Xi X, Tang X, et al. Policy distortions, farm size, and the overuse of agricultural chemicals in China. PNAS, 2018,115(27):7010-7015.
pmid: 29915067 |
[39] |
Hu Y, Li B B, Zhang Z H, et al. Farm size and agricultural technology progress: Evidence from China. Journal of Rural Studies, 2019. Doi: 10.1016/j.jrurstud.2019.01.009.
pmid: 12292354 |
[40] | Li Yaofeng, Zhang Yuhui. Dynamic mechanism of endogenous new agricultural operation subject driving the development of small farmer: Case study based on embeddedness theory. China Agricultural University Journal of Social Sciences Edition, 2020,37(1):38-47. |
[ 李耀锋, 张余慧. 内生型新型农业经营主体带动小农户发展的动力机制. 中国农业大学学报(社会科学版), 2020,37(1):38-47.] | |
[41] |
Song X Q, Huang Y, Wu Z F, et al. Does cultivated land function transition occur in China? Journal of Geographical Sciences, 2015,25(7):817-835.
doi: 10.1007/s11442-015-1204-9 |
[42] | Hayami Y, Ruttan V W. Agricultural Development: An International Perspective. 2nd ed. Baltimore: John Hopkins University Press, 1985. |
[43] |
Lambin E F, Turner B L, Geist H J, et al. The causes of land-use and land-cover change: Moving beyond the myths. Global Environmental Change, 2001,11:261-269.
doi: 10.1016/S0959-3780(01)00007-3 |
[44] |
Scoones I, Smalley R, Hall R, et al. Narratives of scarcity: Framing the global land rush. Geoforum, 2019,101:231-241.
doi: 10.1016/j.geoforum.2018.06.006 |
[45] |
Song X Q, Wu Z F. Modelling and mapping trends in grain production growth in China. Outlook on Agriculture, 2013,42(4):255-263.
doi: 10.5367/oa.2013.0142 |
[46] | Yamada S, Ruttan V W. International comparisons of productivity in agriculture //Yamada S, Ruttan V W. New Developments in Productivity Measurement. Chicago: University of Chicago Press, 1980: 507-594. |
[47] | Department of Price of National Development and Reform Commission . Data Compilation of the National Agricultural Costs and Returns (2002-2018). Beijing: China Statistics Press, 2002-2018. |
[ 国家发展和改革委员会价格司. 全国农产品成本收益资料汇编(2002—2018). 北京: 中国统计出版社, 2002—2018.] | |
[48] |
Feng W L, Liu Y S, Qu L L. Effect of land-centered urbanization on rural development: A regional analysis in China. Land Use Policy, 2019,87:104072. Doi: 10.1016/j.landusepol.2019.104072.
doi: 10.1016/j.landusepol.2019.104072 |
[49] |
Lewis W A. Economic development with unlimited supplies of labor. Manchester School 1954,22:139-191.
doi: 10.1111/j.1467-9957.1954.tb00021.x |
[50] | Azadi H, Hasfiati P H L. Agricultural land conversion drivers: A comparison between less developed, developing and developed countries. Land Degradation & Development, 2011,22(6):596-604. |
[51] |
Li Y H, Chen C, Wang Y F, et al. Urban-rural transformation and farmland conversion in China: The application of the environmental Kuznets Curve. Journal of Rural Studies, 2014,36:311-317.
doi: 10.1016/j.jrurstud.2014.10.005 |
[52] |
Liu J Y, Kuang W H, Zhang Z X, et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. Journal of Geographical Sciences, 2014,24(2):195-210.
doi: 10.1007/s11442-014-1082-6 |
[53] |
Ning J, Liu J Y, Kuang W H, et al. Spatiotemporal patterns and characteristics of land-use change in China during 2010-2015. Journal of Geographical Sciences, 2018,28(5):547-562.
doi: 10.1007/s11442-018-1490-0 |
[54] |
Klasen S, Meyer K M, Dislich C, et al. Economic and ecological trade-offs of agricultural specialization at different spatial scales. Ecological Economics, 2016,122:111-120.
doi: 10.1016/j.ecolecon.2016.01.001 |
[55] |
Lambin E F, Meyfroidt P. Global land use change, economic globalization, and the looming land scarcity. PNAS, 2011,108:3465-3472
doi: 10.1073/pnas.1100480108 pmid: 21321211 |
[56] |
Li J, Zhang Z L, Jin X F, et al. Exploring the socioeconomic and ecological consequences of cash crop cultivation for policy implications. Land Use Policy, 2018,76:46-57.
doi: 10.1016/j.landusepol.2018.04.009 |
[57] |
Su S L, Zhou X C, Wan C, et al. Land use changes to cash crop plantations: crop types, multilevel determinants and policy implications. Land Use Policy, 2016,50:379-389.
doi: 10.1016/j.landusepol.2015.10.003 |
[58] |
Guo J H, Liu X J, Zhang Y, et al. Significant acidification in major Chinese croplands. Science, 2010,327:1008-1010.
pmid: 20150447 |
[59] |
Zuo L J, Zhang Z X, Carlson K M, et al. Progress towards sustainable intensification in China challenged by land-use change. Nature Sustainability, 2018,1:304-313.
doi: 10.1038/s41893-018-0076-2 |
[60] |
D'Acunto L, Andrade J F, Poggio S L, et al. Diversifying crop rotation increased metabolic soil diversity and activity of the microbial community. Agriculture, Ecosystems and Environment, 2018,257:159-164.
doi: 10.1016/j.agee.2018.02.011 |
[61] |
King A E, Hofmockel K S. Diversified cropping systems support greater microbial cycling and retention of carbon and nitrogen. Agriculture, Ecosystems and Environment, 2017,240:66-76.
doi: 10.1016/j.agee.2017.01.040 |
[62] |
Osterholz W R, Liebman M, Castellano M J. Can soil nitrogen dynamics explain the yield benefit of crop diversification? Field Crops Research, 2018,219:33-42.
doi: 10.1016/j.fcr.2018.01.026 |
[63] |
Roesch-McNally G E, Arbuckle J G, Tyndall J C. Barriers to implementing climate resilient agricultural strategies: The case of crop diversification in the U.S. Corn Belt. Global Environmental Change, 2018,48:206-215.
doi: 10.1016/j.gloenvcha.2017.12.002 |
[64] | Shaver I, Chain-Guadarrama A, Cleary K A, et al. Coupled social and ecological outcomes of agricultural intensification in Costa Rica and the future of biodiversity conservation in tropical agricultural regions. Global Environmental Change, 2015,32:74-86. |
[65] |
Sirami C, Gross N, Baillod A B, et al. Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions. PNAS, 2019,116(33):16442-16447.
pmid: 31358630 |
[66] | Storkey J Bruce T J A McMillan V E, et al. The future of sustainable crop protection relies on increased diversity of cropping systems and landscapes// Lemaire G, Carvalho P C D F, Kronberg S, et al. Agroecosystem Diversity: Reconciling Contemporary Agriculture and Environmental Quality. London: Academic Press, 2019: 199-209. |
[67] |
Tiemann L K, Grandy A S, Atkinson E E, et al. Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecology Letters, 2015,18(8):761-771.
pmid: 26011743 |
[68] | Su B Z, Li Y H, Li L Q, et al. How does nonfarm employment stability influence farmers' farmland transfer decisions? Implications for China's land use policy. Land Use Policy, 2018,74:66-72. |
[69] | Liu Y, Yan B J, Wang Y, et al. Will land transfer always increase technical efficiency in China? A land cost perspective. Land Use Policy, 2019,82:414-421. |
[70] | Cai Yunlong, Fu Zeqiang, Dai Erfu. The minimum area per capita of cultivated land and its implication for the optimization of land resource allocation. Acta Geographica Sinica, 2002,57(2):127-134. |
[ 蔡运龙, 傅泽强, 戴尔阜. 区域最小人均耕地面积与耕地资源调控. 地理学报, 2002,57(2):127-134.] | |
[71] | Song X Q, Yang L E, Xia F Z, et al. An inverted U-shaped curve relating farmland vulnerability to biological disasters: Implications for sustainable intensification in China. Science of the Total Environment, 2020,732(25):138829. Doi: 10.1016/j.scitotenv.2020.138829. |
[72] | Lu Liangshu. New development of agriculture and food security. Food and Nutrition in China, 2003(11):11-14. |
[ 卢良恕. 中国农业新发展与食物安全. 中国食物与营养, 2003(11):11-14.] | |
[73] | Lu Liangshu. Study on Strategy of Rational Allocation of Regional Agricultural Resources, Comprehensive Treatment of Environment and Coordinative Development of Agricultural Regions in China. Beijing: China Agricultural Press, 2008. |
[ 卢良恕. 中国区域农业资源合理配置、环境综合治理和农业区域协调发展战略研究. 北京: 中国农业出版社, 2008.] | |
[74] | Jain S, Shukla S, Wadhvani R. Dynamic selection of normalization techniques using data complexity measures. Expert Systems With Applications, 2018,106:252-262. |
[75] | Liu Jingyan, Zhang Ke, Wang Guihua. Comparative study on data standardization methods in comprehensive evaluation. Digital Technology and Application, 2018,36(6):84-85. |
[ 刘竞妍, 张可, 王桂华. 综合评价中数据标准化方法比较研究. 数字技术与应用, 2018,36(6):84-85.] | |
[76] | Holling C S. Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, 1973,4:12-23. |
[77] | Harris J M, Kennedy S. Carrying capacity in agriculture: Global and regional issues. Ecological Economics, 1999,29:443-461. |
[78] | Murray J D. Mathematical Biology I: An Introduction, 3rd ed. Heidelberg: Springer, 2002. |
[79] |
Wang J, McCue S W, Simpson M J. Extended logistic growth model for heterogeneous populations. Journal of Theoretical Biology, 2018,445:51-61.
doi: 10.1016/j.jtbi.2018.02.027 pmid: 29481822 |
[80] | Ministry of Land and Resources of the People's Republic of China. China Land and Resources Statistical Yearbook (1996-2017). Beijing: Geological Press, 1996-2017. |
[ 中华人民共和国国土资源部. 中华人民共和国国土资源统计年鉴(1996—2008). 北京: 地质出版社, 1996—2017.] | |
[81] | Bi Yuyun, Zheng Zhenyuan. The actual changes of cultivated area since the foundation of New China. Resources Science, 2000,22(2):8-12. |
[ 毕于运, 郑振源. 建国以来中国实有耕地面积增减变化分析. 资源科学, 2000,22(2):8-12.] | |
[82] | Feng Zhiming, Liu Baoqin, Yang Yanzhao. A study of the changing trend of Chinese cultivated land amount and data reconstructing: 1949-2003. Journal of Natural Resources, 2005,20(1):35-43. |
[ 封志明, 刘宝勤, 杨艳昭. 中国耕地资源数量变化的趋势分析与数据重建: 1949—2003. 自然资源学报, 2005,20(1):35-43.] | |
[83] | National Bureau of Statistics of China. China Statistical Yearbook (1986-2009). Beijing: China Statistics Press, 1988-2018. |
[ 中华人民共和国国家统计局. 中国统计年鉴(1988—2018). 北京: 中国统计出版社, 1988—2018.] | |
[84] | Rudel T K, Coomes O T, Moran E, et al. Forest transitions: Towards a global understanding of land use change. Global Environmental Change, 2005,15(1):23-31. |