Acta Geographica Sinica ›› 2020, Vol. 75 ›› Issue (7): 1483-1493.doi: 10.11821/dlxb202007011
• Climate Change and Surface Process • Previous Articles Next Articles
Received:
2019-06-29
Revised:
2020-04-15
Online:
2020-07-25
Published:
2020-09-25
Contact:
ZUO Qiting
E-mail:zuoqt@zzu.edu.cn
Supported by:
ZUO Qiting, CUI Guotao. Quantitative evaluation of human activities affecting an interconnected river system network[J].Acta Geographica Sinica, 2020, 75(7): 1483-1493.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Influences of human activities on interconnected river system network
正负影响 | 三个层面 | ||||||
---|---|---|---|---|---|---|---|
河湖水系连通关系 | ![]() | 河湖水系功能 (自然角度) | ![]() | 河湖水系连通功能 (社会角度) | |||
正面影响 | · 增强水系系统内部及外部联系 · 增加流域的水系连接度 · 提高水系分形维数 · 人工连通水域面积 | · 增强区域水循环能力 · 增加水资源储载空间 · 汇集和储存水分,保护动植物生存环境 · 增加了水资源可利用量 · 提高了河湖的纳污能力 | · 水利建设与发展,支撑经济社会可持续发展 · 提高水资源配置能力 · 改善水生态与环境 · 增强防洪、除涝能力 | ||||
负面影响 | · 改变了自然演变形成的符合自然规律的水系连通关系 · 过滤或阻隔物质流、能量流、信息流的传递 | · 减弱物质能量传输,改变了自然水文情势 · 改变河湖水系周边的水质水量分布,对生态系统形成威胁 · 改变水文循环,水文破碎化,破坏连续性 | · 经济合理性问题、投资量大、回收期长、正常运行风险 · 生态和环境的破坏有时是不可逆的 · 移民及社会稳定问题 |
Tab.2
Quantitative evaluation criteria of human activities affecting interconnected river system network
准则层 | 分类层 | 指标层 | 含义 | |
---|---|---|---|---|
河湖水系连通关系影响系数 | 形态分布影响系数 | 人工连通水域面积百分比 | 人工连通的水域面积占总水域面积的百分比 | |
水系分形维数变化率 | (D1-D0)/D1; D1为现状水系分形维数; D0为没有或较少进行人工连通的水系分形维数 | |||
连通状态影响系数 | 水系连接度变化率 | (γ1-γ0)/γ1; γ1为现状水系连接度; γ0为没有或较少进行人工连通的水系连接度 | ||
河湖水系功能影响系数 | 水资源储载影响系数 | 人工连通水资源储载百分比 | 人工连通水资源储载空间占水系总储载空间的百分比 | |
物质能量传递影响系数 | 平均连续河段长度变化率 | (L0-L1)/L1; L1为现状平均连续河段长度, L1=∑L/n; L0为没有或较少进行人工连通情况下平均连续河段长度 | ||
河流地貌塑造影响系数 | 河道侵蚀模数变化率 | (M0-M1)/M1; M1为现状河道侵蚀模数; M0为没有或较少进行人工连通的河道侵蚀模数 | ||
水体自净影响系数 | 人工连通水体纳污能力百分比 | 人工连通水体纳污能力占整个水系纳污能力的百分比 | ||
生态维系影响系数 | 生物多样性指数变化率 | (H1-H0)/H1; H1为现状生物多样性指数; H0为人类未大规模开发利用时期的生境多样性指数 | ||
河湖水系连通功能影响系数 | 水资源配置影响系数 | 城市供水 | 城市人工连通供水百分比 | 人工连通城市供水量占总连通城市供水量的百分比 |
农业灌溉 | 农业灌溉人工连通供水百分比 | 人工连通农业灌溉供水量占总连通农业灌溉供水量的百分比 | ||
水力发电 | 水力发电量变化率 | (E1-E0)/E1; E1为现状水电站多年平均发电量; E0为没有或较少进行人工连通情况下水电站多年平均发电量 | ||
应急抗旱 | 人工连通应急抗旱百分比 | 人工连通应急调水量占总连通应急调水量的百分比 | ||
水运交通 | 河道通航能力变化率 | (W1-W0)/W1; W1为现状水运交通多年平均运力;W0为没有或较少进行人工连通情况下水运交通多年平均运力 | ||
生态环境保护影响系数 | 环境改善 | 人工连通环境纳污用水百分比 | 人工连通的环境纳污用水量占总环境纳污用水量的百分比 | |
生态修复 | 人工连通生态修复用水百分比 | 人工连通的生态修复用水量占总生态修复用水量的百分比 | ||
景观维护 | 人工连通景观维护供水百分比 | 人工连通的景观维护供水量占总景观维护供水量的百分比 | ||
防洪除涝影响系数 | 防洪减灾 | 人工连通防洪可调控百分比 | 人工连通的防洪蓄泄空间可调控水量占总防洪蓄泄空间可调控水量的百分比 | |
除涝治碱 | 人工连通排涝可调控百分比 | 人工连通的排涝蓄泄空间可调控水量占总排涝蓄泄空间可调控水量的百分比 |
Tab. 3
Quantitative evaluation grade of human activities affecting interconnected river system network
影响评估等级 | 取值范围 |
---|---|
产生很大正面作用 | 0.8 ≤ HAIC ≤ 1 |
产生较大正面作用 | 0.65 ≤ HAIC < 0.8 |
产生略微正面作用 | 0.55 ≤ HAIC < 0.65 |
未产生明显作用 | 0.45 ≤ HAIC < 0.55 |
造成略微负面影响 | 0.35 ≤ HAIC < 0.45 |
造成较大负面影响 | 0.2 ≤ HAIC < 0.35 |
造成很大负面影响 | 0 ≤ HAIC < 0.2 |
Tab. 4
Results of quantitative evaluation of human activities affecting Huaihe River basin
目标层 | 准则层 | 分类层 | 指标值(%) | 子影响系数 | 准则层指数 | 目标层系数 | |
---|---|---|---|---|---|---|---|
人类活动对河湖水系连通的影响系数(HAIC) | 河湖水系连通关系影响系数(IRSNRIC) | 形态分布影响系数 | 13.6 | 0.68 | 0.732 | 0.660 | |
0.43 | 0.63 | ||||||
连通状态影响系数 | 0.03 | 0.51 | |||||
河湖水系功能影响系数(RLSNFIC) | 水资源储载影响系数 | 58.2 | 0.88 | 0.405 | |||
物质能量传递影响系数 | 8.95 | 0.23 | |||||
河流地貌塑造影响系数 | 17.17 | 0.70 | |||||
水体自净影响系数 | 8.57 | 0.63 | |||||
生态维系影响系数 | 40.00 | 0.10 | |||||
河湖水系连通功能影响系数 (IRSNFIC) | 水资源配置影响系数 | 城市供水 | 18.16 | 0.77 | 0.816 | ||
农业灌溉 | 20.68 | 0.81 | |||||
水力发电 | 8.89 | 0.63 | |||||
应急抗旱 | 100 | 1.00 | |||||
水运交通 | 250 | 1.00 | |||||
生态环境保护影响系数 | 环境改善 | 15 | 0.73 | ||||
生态修复 | 15 | 0.73 | |||||
景观维护 | 45 | 0.74 | |||||
防洪除涝影响系数 | 防洪减灾 | 65 | 0.95 | ||||
除涝治碱 | 60 | 0.90 |
[1] | Wang Zhonggen, Li Zongli, Liu Changming, et al. Discussion on water cycle mechanism of interconnected river system network. Journal of Natural Resources, 2011,26(3):523-530. |
[ 王中根, 李宗礼, 刘昌明, 等. 河湖水系连通的理论探讨. 自然资源学报, 2011,26(3):523-530.] | |
[2] | Zhao Junkai, Li Lixian, Zhang Aishe, et al. Discussions of the river-lake interconnected relationship connotation. Journal of East China Normal University (Natural Science), 2016(4):118-128. |
[ 赵军凯, 李立现, 张爱社, 等. 再论河湖连通关系. 华东师范大学学报(自然科学版), 2016(4), 118-128.] | |
[3] | Zuo Qiting, Cui Guotao. Study on theoretical system and framework of interconnected river system network. Water Resources and Power, 2012,30(1):1-5. |
[ 左其亭, 崔国韬. 河湖水系连通理论体系框架研究. 水电能源科学, 2012,30(1):1-5.] | |
[4] | Han Qiwei. Variation mechanism of the relation between Jingjiang River and Dongting Lake. Journal of Yangtze River Scientific Research Institute, 2014,31(6):104-112. |
[ 韩其为. 江湖关系变化的内在机理. 长江科学院院报, 2014,31(6), 104-112.] | |
[5] | Wan Rongrong, Yang Guishan, Wang Xiaolong, et al. Progress of research on the relationship between the Yangtze River and its connected lakes in the middle reaches. Journal of Lake Sciences, 2014,26(1):1-8. |
[ 万荣荣, 杨桂山, 王晓龙, 等. 长江中游通江湖泊江湖关系研究进展. 湖泊科学, 2014,26(1):1-8.] | |
[6] | Dou Ming, Yu Lu, Jin Meng, et al. Study on relationship between box dimension and connectivity of river system in Huaihe River Basin. Journal of Hydraulic Engineering, 2019,50(6):670-678. |
[ 窦明, 于璐, 靳梦, 等. 淮河流域水系盒维数与连通度相关性研究. 水利学报, 2019,50(6):670-678.] | |
[7] | Wang Yan, Zuo Qiting, Shi Shujie. Harmony problems and research approaches in interconnected river system network. Yellow River, 2018,40(5):49-53, 57. |
[ 王妍, 左其亭, 史树洁. 河湖水系连通的和谐问题及研究途径. 人民黄河, 2018,40(5):49-53, 57.] | |
[8] | Yang Wei, Zhang Liping, Zhang Yanjun, et al. Developing a comprehensive evaluation method for interconnected river system network assessment: A case study in Tangxun Lake group. Journal of Geographical Sciences, 2019,29(3):71-87. |
[9] | Zhao Junkai, Li Lixian, Zhang Aishe, et al. A new approach for the health assessment of river systems based on interconnected water system networks. Journal of Resources and Ecology, 2017,8(3):251-258. |
[10] | Gan Rong, Zuo Qiting. An analysis of the characteristics and the evaluation indexes of evolution of spatial pattern of river-lake system in Xiangyang city. China Rural Water and Hydropower, 2017(6):53-57. |
[ 甘容, 左其亭. 襄阳市河湖水系空间格局演变评估分析. 中国农村水利水电, 2017(6):53-57.] | |
[11] | Zhang Lei, Pan Baozhu, Jiang Xiaoming, et al. Research progress on the river-lake relation based on hydrological connectivity analysis. Resources and Environment in the Yangtze Basin, 2018,27(12):167-178. |
[ 张磊, 潘保柱, 蒋小明, 等. 基于水文连通分析的江湖关系研究进展. 长江流域资源与环境, 2018,27(12):167-178.] | |
[12] | Yang Wei, Zhang Liping, Zhang Yanjun, et al. Developing a comprehensive evaluation method for Interconnected River System Network assessment: A case study in Tangxun Lake group. Journal of Geographical Sciences, 2019,29(3):389-405. |
[13] | Cai Baofeng, Meng Chong, Wang Xianen, et al. Application of a fuzzy two-stage chance constrained stochastic programming model for optimization of the ecological services value of the interconnected river system network project in the western Jilin Province, China. Water, 2019,11(1):68. |
[14] | Zhang Lei, Hou Guanglei, Li Fengping. Dynamics of landscape pattern and connectivity of wetlands in western Jilin Province, China. Environment, Development and Sustainability, 2019: 1-12. |
[15] | Wu Lei, Xu Youpeng, Xu Yu, et al. Impact of rapid urbanization on river system in a river network plain. Acta Geographica Sinica, 2018,73(1):104-114. |
[ 吴雷, 许有鹏, 徐羽, 等. 平原水网地区快速城市化对河流水系的影响. 地理学报, 2018,73(1):104-114.] | |
[16] | Yang Wei, Zhang Liping, Li Zongli, et al. Interconnected river system network scheme of urban lake group based on water environment improvement. Acta Geographica Sinica, 2018,73(1):115-128. |
[ 杨卫, 张利平, 李宗礼, 等. 基于水环境改善的城市湖泊群河湖连通方案研究. 地理学报, 2018,73(1):115-128.] | |
[17] | Dai Wen, Lu Dianqing, Li Jingbao, et al. Identification of hydrologic drought characteristics under water system connectivity variation in river system of three outlets of Jingjiang river. Acta Geographica Sinica, 2019,74(3):557-571. |
[ 代稳, 吕殿青, 李景保, 等. 水系连通变异下荆南三口河系水文干旱识别与特征分析. 地理学报, 2019,74(3):557-571.] | |
[18] | Gao Ting, Li Chong, Liao Wengen. A study of historical evolution of rivers and lakes driven by natural and artificial forces and its enlightenment. Yangtze River, 2012,43(1):12-17. |
[ 高婷, 李翀, 廖文根. 二元驱动的河湖历史演变及其启示. 人民长江, 2012,43(1):12-17.] | |
[19] | Zhang Junyong, Chen Li, Wu Hualin, et al. Cellular model for the form and development of drainage system. Advances in Water Science, 2007(5):695-700. |
[ 张俊勇, 陈立, 吴华林, 等. 水系形成与发展的元胞自动机模型研究. 水科学进展, 2007(5):695-700.] | |
[20] | Chen Zhiqing. The deposition, breach, and diversion in the lower Yellow River and their relationships with human activities during the historical period. Progress in Geography, 2001,20(1):44-50. |
[ 陈志清. 历史时期黄河下游的淤积、决口改道及其与人类活动的关系. 地理科学进展, 2001,20(1):44-50.] | |
[21] | Jain V, Tandon S K. Conceptual assessment of (dis)connectivity and its application to the Ganga River dispersal system. Geomorphology, 2010,118(3/4):349-358. |
[22] | Ward J V. The four dimensional nature of lotic ecosystems. Journal of the North American Benthological Society, 1989,8(1):2-8. |
[23] | Vörösmarty C, Lettenmaier D, Leveque C, et al. Humans transforming the global water system. Eos, Transactions American Geophysical Union, 2004,85(48):509-514. |
[24] | Gregory K J. The human role in changing river channels. Geomorphology, 2006,79(3/4):172-191. |
[25] | Xia Jun, Gao Yang, Zuo Qiting, et al. Characteristics of interconnected rivers system and its ecological effects on water environment. Progress in Geography, 2012,31(1):26-31. |
[ 夏军, 高扬, 左其亭, 等. 河湖水系连通特征及其利弊. 地理科学进展, 2012,31(1):26-31.] | |
[26] | Zuo Qiting, Zhang Yun, Lin Ping. Index system and quantification method for human-water harmony. Journal of Hydraulic Engineering, 2008,39(4):440-447. |
[ 左其亭, 张云, 林平. 人水和谐评价指标及量化方法研究. 水利学报, 2008,39(4):440-447.] | |
[27] | Zuo Qiting, Zhao Heng, Ma Junxia. Study on harmony equilibrium between water resources and economic society development. Journal of Hydraulic Engineering, 2014,45(7):785-792, 800. |
[ 左其亭, 赵衡, 马军霞. 水资源与经济社会和谐平衡研究. 水利学报, 2014,45(7):785-792, 800.] | |
[28] | Cui Guotao, Zuo Qiting. Analysis and quantitative evaluation of human activities affecting river system network interconnected relationship. Journal of Water Resources Research, 2012,1(5):326-333. |
[ 崔国韬, 左其亭. 人类活动对河湖水系连通关系的影响及量化评估. 水资源研究, 2012,1(5):326-333.] | |
[29] | Zuo Qiting. Harmony Theory: Theory Method Application. Beijing: Science Press, 2012. |
[ 左其亭. 和谐论:理论·方法·应用. 北京: 科学出版社, 2012.] | |
[30] | Gao Yongnian, Gao Junfeng. Comprehensive assessment of eco-environment impact of the South-to-North Water Transfer Middle Route Project on the middle-lower Hanjiang River basin. Progress in Geography, 2010,29(1):59-64. |
[ 高永年, 高俊峰. 南水北调中线工程对汉江中下游流域生态环境影响的综合评价. 地理科学进展. 2010,29(1):59-64.] | |
[31] | Guo Xiao, Fang Guohua. Eco-environment Impact Assessment for Inter-basin Water Transfer. Beijing: China Water & Power Press, 2010. |
[ 郭潇, 方国华. 跨流域调水生态环境影响评价研究. 北京: 中国水利水电出版社, 2010.] | |
[32] | Ma Zongwei, Xu Youpeng, Li Jiajun. River fractal dimension and the relationship between river fractal dimension and river flood: Case study in the middle and lower course of the Yangtze River. Advances in Water Science, 2005(4):530-534. |
[ 马宗伟, 许有鹏, 李嘉峻. 河流形态的分维及与洪水关系的探讨: 以长江中下游为例. 水科学进展, 2005(4):530-534.] | |
[33] | Yang Xiuchun, Zhu Xiaohua. Fractal analysis applied to the 7 drainage basins and the flood in China. Journal of Catastrophology, 2002(3):10-14. |
[ 杨秀春, 朱晓华. 中国七大流域水系与洪涝的分维及其关系研究. 灾害学, 2002(3):10-14.] | |
[34] | Dou Ming, Zhang Yuandong, Zhang Yazhou, et al. Assessment on the water system interconnection degree of Huaihe River Basin. China Water Resources, 2013(9):21-23. |
[ 窦明, 张远东, 张亚洲, 等. 淮河流域水系连通状况评估. 中国水利, 2013(9):21-23.] | |
[35] | Lu Shanlong, Wu Bingfang, Wang Hao, et al. Hydro-ecological impact of water conservancy projects in the Haihe River Basin. Acta Oecologica, 2011,44:67-74. |
[1] | LIU Changming, LI Zongli, WANG Zhonggen, HAO Xiuping, ZHAO Changsen. Key scientific issues and research directions of the interconnected river system network [J]. Acta Geographica Sinica, 2021, 76(3): 505-512. |
[2] | LI Zongli, LIU Changming, HAO Xiuping, QIU Bing, WANG Zhonggen. Theoretical basis and priority areas of the interconnected river system network research [J]. Acta Geographica Sinica, 2021, 76(3): 513-524. |
[3] | SUN Hongri, LIU Yanjun, ZHOU Guolei. The spatiotemporal differentiation and mechanisms of traffic dominance in Northeast China [J]. Acta Geographica Sinica, 2021, 76(2): 444-458. |
[4] | SUN Jiuxia, XU Yongxia, WANG Xueji. The ternary interactive practice of the production of traditional ritual space in the tourism context [J]. Acta Geographica Sinica, 2020, 75(8): 1742-1756. |
[5] | JIN Kai, WANG Fei, HAN Jianqiao, SHI Shangyu, DING Wenbin. Contribution of climatic change and human activities to vegetation NDVI change over China during 1982-2015 [J]. Acta Geographica Sinica, 2020, 75(5): 961-974. |
[6] | DENG Hui, BU Fan. Spatial distribution of the Tang Po Lakes upon the Central Hebei Plain during the Northern Song Dynasty [J]. Acta Geographica Sinica, 2020, 75(11): 2332-2345. |
[7] | LIU Xiaoyan, LIU Changming, DANG Suzhen. Effects of rainfall intensity on sediment concentration in loess hilly region of China [J]. Acta Geographica Sinica, 2019, 74(9): 1723-1732. |
[8] | YANG Yu,LI Xiaoyun,DONG Wen,HONG Hui,HE Ze,JIN Fengjun,LIU Yi. Comprehensive evaluation on China's man-land relationship: Theoretical model and empirical study [J]. Acta Geographica Sinica, 2019, 74(6): 1063-1078. |
[9] | Wen DAI, Dianqing LU, Jingbao LI, Jinfeng WANG, Zengyou ZHAO. Identification of hydrologic drought characteristics under water system connectivity variation in river system of three outlets of Jingjiang river [J]. Acta Geographica Sinica, 2019, 74(3): 557-571. |
[10] | CHEN Yonglin,XIE Binggeng,ZHANG Aiming,CHAI Chaoqian. The impact of traffic on spatial mobility at different scales [J]. Acta Geographica Sinica, 2018, 73(6): 1162-1172. |
[11] | YANG Wenyue,CAO Xiaoshu. The influence mechanism of travel-related CO2 emissions from the perspective of residential self-selection: A case study of Guangzhou [J]. Acta Geographica Sinica, 2018, 73(2): 346-361. |
[12] | LI Qiong,ZHOU Yu,ZHANG Lanlan,WU Xiongzhou,CHAO Nan. Regional disparities and the influence mechanism within China's urban employees' basic endowment insurance funds [J]. Acta Geographica Sinica, 2018, 73(12): 2409-2422. |
[13] | ZHANG Yunfeng, ZHANG Zhenke, REN Hang, GAO Lei, DING Haiyan. The sediment sources and quantitative evaluation of tidal flat at Qidong foreland, the Yangtze Estuary in recent 100 years [J]. Acta Geographica Sinica, 2018, 73(11): 2105-2116. |
[14] | WU Lei,XU Youpeng,XU Yu,YUAN Jia,XIANG Jie,XU Xing,XU Yong. Impact of rapid urbanization on river system in a river network plain [J]. Acta Geographica Sinica, 2018, 73(1): 104-114. |
[15] | YANG Wei,ZHANG Liping,LI Zongli,ZHANG Yanjun,XIAO Yi,XIA Jun. Interconnected river system network scheme of urban lake group based on water environment improvement [J]. Acta Geographica Sinica, 2018, 73(1): 115-128. |