Acta Geographica Sinica ›› 2020, Vol. 75 ›› Issue (7): 1451-1464.doi: 10.11821/dlxb202007009
• Climate Change and Surface Process • Previous Articles Next Articles
TAO Zexing1(), GE Quansheng1,2, WANG Huanjiong1(
)
Received:
2019-07-26
Revised:
2020-04-06
Online:
2020-07-25
Published:
2020-09-25
Contact:
WANG Huanjiong
E-mail:taozx.12s@igsnrr.ac.cn;wanghj@igsnrr.ac.cn
Supported by:
TAO Zexing, GE Quansheng, WANG Huanjiong. Spatio-temporal variations in the thermal requirement of the first flowering dates of Salix babylonica and Ulmus pumila in China during 1963-2018[J].Acta Geographica Sinica, 2020, 75(7): 1451-1464.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
The location of phenological observation sites and corresponding meteorological stations
编号 | 物候 观测站 | 观测地点 | 垂柳观测起止年(年数) | 榆树观测起止年 (年数) | 气象站 (编号) | 纬度 (°N) | 经度 (°E) |
---|---|---|---|---|---|---|---|
1 | 嫩江 | 嫩江农场 | 1975—1994(10) | 1974—1991(16) | 嫩江(50557) | 49.19 | 125.24 |
2 | 五大连池 | 龙镇农场 | 缺测 | 1974—1979(5) | 北安(50656) | 49.00 | 126.78 |
3 | 佳木斯 | 黑龙江农科院 佳木斯分院 | 1983—1988(5) | 1966—1996(22) | 佳木斯(50873) | 46.81 | 130.34 |
4 | 虎林 | 虎林市气象局 | 1983—1987(5) | 1964—1987(7) | 虎林(50983) | 45.77 | 132.97 |
5 | 哈尔滨 | 黑龙江省森林植物园 | 1963—1979(5) | 1963—2014(26) | 哈尔滨(50953) | 45.75 | 126.63 |
6 | 牡丹江 | 牡丹江农气试验站 | 1978—2018(42) | 1965—2018(42) | 牡丹江(54094) | 44.57 | 129.58 |
7 | 石河子 | 石河子大学 | 1984—1996(12) | 1963—1996(16) | 石河子(51356) | 44.35 | 85.95 |
8 | 长春 | 吉林省自然博物馆 | 2003—2018(16) | 1986—2018(25) | 长春(54161) | 43.88 | 125.35 |
9 | 乌鲁木齐 | 新疆林科院 | 1985—2018(5) | 1963—1990(8) | 乌鲁木齐(51463) | 43.75 | 87.60 |
10 | 沈阳 | 沈阳农业大学 | 1964—2018(23) | 1964—2018(26) | 沈阳(54342) | 41.80 | 123.38 |
11 | 承德 | 河北旅游职业学院 | 缺测 | 1974—1996(10) | 承德(54423) | 40.85 | 118.06 |
12 | 呼和浩特 | 内蒙古大学 | 1979—2012(12) | 1964—2004(12) | 呼和浩特(53463) | 40.80 | 111.68 |
13 | 张家口 | 张家口气象局 | 1974—1993(10) | 1974—1993(10) | 张家口(54401) | 40.78 | 114.90 |
14 | 北京 | 颐和园 | 1974—2018(6) | 1963—2012(43) | 北京(54511) | 40.02 | 116.33 |
15 | 秦皇岛 | 秦皇岛市地理学会 | 1980—1993(12) | 1980—1993(12) | 秦皇岛(54449) | 39.88 | 119.25 |
16 | 天津 | 园林绿化所 | 1980—1992(9) | 1980—1992(12) | 天津(54527) | 39.39 | 117.07 |
17 | 原平 | 原平县水利局 | 1977—1982(5) | 1976—1982(7) | 原平(53673) | 38.73 | 112.71 |
18 | 民勤 | 民勤沙生植物园 | 缺测 | 1974—1996(20) | 民勤(52681) | 38.63 | 103.08 |
19 | 银川 | 宁夏气象科研所 | 2003—2018(20) | 2006—2018(13) | 银川(53614) | 38.48 | 106.22 |
20 | 邢台 | 达活泉公园 | 1982—1996(15) | 1982—1996(15) | 邢台(53798) | 37.09 | 114.48 |
21 | 潍坊 | 潍坊市气象局 | 1967—1996(9) | 1985—1996(8) | 潍坊(54843) | 36.69 | 119.08 |
22 | 济南 | 山东省科学院 | 1965—2018(5) | 1963—2018(8) | 济南(54823) | 36.65 | 117.04 |
23 | 泰安 | 山东农业大学 | 1963—1985(12) | 1963—1981(6) | 泰安(54827) | 36.17 | 117.10 |
24 | 西安 | 西安植物园 | 1964—2018(39) | 1964—2015(31) | 泾河(57131) | 34.22 | 108.97 |
25 | 南京 | 九华山公园 | 1987—2017(17) | 1987—2018(10) | 南京(58238) | 32.04 | 118.78 |
26 | 合肥 | 合肥师范学院 | 1965—2018(37) | 1965—2018(35) | 合肥(58321) | 31.83 | 117.25 |
27 | 芜湖 | 安徽师范大学 | 1963—1996(18) | 1963—1996(14) | 芜湖(58334) | 31.28 | 118.38 |
28 | 武汉 | 狮子山 | 1963—1981(6) | 缺测 | 武汉(57494) | 30.52 | 114.31 |
29 | 杭州 | 杭州植物园 | 1963—1983(9) | 缺测 | 杭州(58457) | 30.25 | 120.12 |
30 | 宁波 | 宁波农业科学研究院 | 1968—1996(25) | 1981—1989(6) | 鄞县(58562) | 29.85 | 121.62 |
31 | 屯溪 | 黄山学院 | 1982—1996(14) | 缺测 | 屯溪(58531) | 29.69 | 118.29 |
32 | 南昌 | 江西农业大学 | 2008—2018(9) | 1985—1991(7) | 南昌(58606) | 28.77 | 115.83 |
33 | 长沙 | 中南林业科技大学 | 2007—2019(10) | 缺测 | 长沙(57679) | 28.20 | 113.07 |
34 | 温州 | 温州科技职业学院 | 1966—1974(9) | 缺测 | 温州(58659) | 27.98 | 120.63 |
35 | 贵阳 | 贵州大学 | 1963—2018(30) | 1963—2018(32) | 贵阳(57816) | 26.42 | 106.67 |
36 | 福州 | 福州农气试验站 | 2003—2018(10) | 缺测 | 福州(58847) | 26.08 | 119.33 |
37 | 桂林 | 桂林植物园 | 1964—2015(25) | 缺测 | 桂林(57957) | 25.18 | 110.20 |
38 | 昆明 | 昆明植物园 | 1963—2017(19) | 缺测 | 昆明(56778) | 25.04 | 102.73 |
39 | 厦门 | 厦门大学 | 1964—1988(8) | 缺测 | 厦门(59134) | 24.44 | 118.10 |
Tab. 2
The equations of chilling day-thermal requirement models based on spatio-temporal mixed sample
物种 | 积温需求算法 | 公式 | R2 | RMSE(°C·d) | P |
---|---|---|---|---|---|
垂柳 | GDD | F=92.17+502.79×e-C/24.29 | 0.66 | 84.09 | < 0.01 |
GDDS | F=122.47+428.79×e-C/34.99 | 0.60 | 85.09 | < 0.01 | |
GDH | F=110.98+461.55×e-C/20.43 | 0.54 | 94.00 | < 0.01 | |
榆树 | GDD | F=36.30+774.01×e-C/15.89 | 0.64 | 29.75 | < 0.01 |
GDDS | F=68.27+363.21×e-C/30.04 | 0.40 | 33.01 | < 0.01 | |
GDH | F=29.82+132.32×e-C/47.74 | 0.33 | 32.32 | < 0.01 |
[1] |
Donnelly A, Caffarra A, O'Neill B F. A review of climate-driven mismatches between interdependent phenophases in terrestrial and aquatic ecosystems. International Journal of Biometeorology, 2011,55(6):805-817.
doi: 10.1007/s00484-011-0426-5 pmid: 21509461 |
[2] | Høye T T, Post E, Schmidt N M, et al. Shorter flowering seasons and declining abundance of flower visitors in a warmer Arctic. Nature Climate Change, 2013,3(8):759-763. |
[3] | Tao Zexing, Zhong Shuying, Ge Quansheng, et al. Spatiotemporal variations in flowering duration of woody plants in China from 1963 to 2012. Acta Geographica Sinica, 2017,72(1):53-63. |
[ 陶泽兴, 仲舒颖, 葛全胜, 等. 1963—2012年中国主要木本植物花期长度时空变化. 地理学报, 2017,72(1):53-63.] | |
[4] | Zhang Mingqing, Yang Guodong, Fan Zhentao, et al. Prediction of flowering date of dominant trees with allergic pollen in Beijing. Journal of Environment and Health, 2008,25(3):262-263. |
[ 张明庆, 杨国栋, 范振涛, 等. 北京地区主要致敏花粉树木花期的预报. 环境与健康杂志, 2008,25(3):262-263.] | |
[5] |
Wang H J, Zhong S Y, Tao Z X, et al. Changes in flowering phenology of woody plants from 1963 to 2014 in North China. International Journal of Biometeorology, 2019,63(5):579-590.
pmid: 28547481 |
[6] | Dong Haitao, Tan Lijing, Liu Honglin, et al. Study on forecasting flowering phase of peach tree based on accumulated temperature model in Dandong. Journal of Meteorology and Environment, 2018,34(1):99-105. |
[ 董海涛, 谭丽静, 刘洪林, 等. 基于积温模型丹东地区桃树盛花期预测研究. 气象与环境学报, 2018,34(1):99-105.] | |
[7] | IPCC. Summary for policymakers//Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. World Meteorological Organization, Geneva, Switzerland, 2018: 1-32. |
[8] | Zhuang W B, Cai B H, Gao Z H, et al. Determination of chilling and heat requirements of 69 Japanese apricot cultivars. European Journal of Agronomy, 2016,74:68-74. |
[9] | Templ B, Templ M, Filzmoser P, et al. Phenological patterns of flowering across biogeographical regions of Europe. International Journal of Biometeorology, 2017,61(7):1347-1358. |
[10] | Hunter A F, Lechowicz M J. Predicting the timing of budburst in temperate trees. Journal of Applied Ecology, 1992,29(3):597-604. |
[11] | Xu Yunjia, Zhong Shuying, Dai Junhu, et al. Changes in flowering phenology of plants and their model simulation in Mudanjiang, China. Geographical Research, 2017,36(4):779-789. |
[ 徐韵佳, 仲舒颖, 戴君虎, 等. 1978—2014年牡丹江地区植物花期变化及模型模拟. 地理研究, 2017,36(4):779-789.] | |
[12] | Zhang Aiying, Wang Huanjiong, Dai Junhu, et al. Applicability analysis of phenological models in the flowering time prediction of ornamental plants in Beijing area. Journal of Applied Meteorological Science, 2014,25(4):483-492. |
[ 张爱英, 王焕炯, 戴君虎, 等. 物候模型在北京观赏植物开花期预测中的适用性. 应用气象学报, 2014,25(4):483-492.] | |
[13] | Basler D. Evaluating phenological models for the prediction of leaf-out dates in six temperate tree species across central Europe. Agricultural and Forest Meteorology, 2016,217:10-21. |
[14] |
Linkosalo T, Häkkinen R, Hänninen H. Models of the spring phenology of boreal and temperate trees: Is there something missing? Tree Physiology, 2006,26(9):1165-1172.
pmid: 16740492 |
[15] | Zhang X Y, Friedl M A, Schaaf C B, et al. Climate controls on vegetation phenological patterns in northern mid- and high latitudes inferred from MODIS data. Global Change Biology, 2004,10(7):1133-1145. |
[16] | Cong N, Shen M G, Piao S L, et al. Little change in heat requirement for vegetation green-up on the Tibetan Plateau over the warming period of 1998-2012. Agricultural and Forest Meteorology, 2017,232:650-658. |
[17] | Fu Y H, Piao S, Vitasse Y, et al. Increased heat requirement for leaf flushing in temperate woody species over 1980-2012: Effects of chilling. precipitation and insolation, Global Change Biology, 2015,21(7):2687-2697. |
[18] |
Carter J M, Orive M E, Gerhart L M, et al. Warmest extreme year in US history alters thermal requirements for tree phenology. Oecologia, 2017,183(4):1197-1210.
pmid: 28224350 |
[19] |
Flynn D F B, Wolkovich E M. Temperature and photoperiod drive spring phenology across all species in a temperate forest community. New Phytologist, 2018,219(4):1353-1362.
doi: 10.1111/nph.15232 pmid: 29870050 |
[20] |
Laube J, Sparks T H, Estrella N, et al. Chilling outweighs photoperiod in preventing precocious spring development. Global Change Biology, 2014,20(1):170-182.
doi: 10.1111/gcb.12360 pmid: 24323535 |
[21] |
Fu Y S H, Piao S L, Zhou X C, et al. Short photoperiod reduces the temperature sensitivity of leaf-out in saplings of Fagus sylvatica but not in horse chestnut. Global Change Biology, 2019,25(5):1696-1703.
doi: 10.1111/gcb.14599 pmid: 30779408 |
[22] |
Heide O M, Prestrud A K. Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear. Tree Physiology, 2005,25(1):109-114.
doi: 10.1093/treephys/25.1.109 pmid: 15519992 |
[23] |
Vihera-Aarnio A, Sutinen S, Partanen J, et al. Internal development of vegetative buds of Norway spruce trees in relation to accumulated chilling and forcing temperatures. Tree Physiology, 2014,34(5):547-556.
doi: 10.1093/treephys/tpu038 pmid: 24876293 |
[24] | Cannell M G R, Smith R I. Thermal time, chill days and prediction of budburst in Picea sitchensis. Journal of Applied Ecology, 1983,20(3):951-963. |
[25] |
Okie W R, Blackburn B. Increasing chilling reduces heat requirement for floral budbreak in peach. Hortscience, 2011,46(2):245-252.
doi: 10.21273/HORTSCI.46.2.245 |
[26] | Wan Minwei, Liu Xiuzhen. China Phenological Observation Method. Beijing: Science Press, 1979: 1-24. |
[ 宛敏渭, 刘秀珍. 中国物候观测方法. 北京: 科学出版社, 1979: 1-24.] | |
[27] | Zheng Jingyun, Bian Juanjuan. Merge on daily temperature data by adjusting two series of adjacent meteorological stations with observation type alternation. Geographical Research, 2012,31(4):579-588. |
[ 郑景云, 卞娟娟. 类型变更的相邻气象观测站的日气温资料整合. 地理研究, 2012,31(4):579-588.] | |
[28] |
Chow D H C, Levermore G J. New algorithm for generating hourly temperature values using daily maximum, minimum and average values from climate models. Building Services Engineering Research & Technology, 2007,28(3):237-248.
doi: 10.1177/0143624407078642 |
[29] | Sarvas R. Investigations on the annual cycle of development on forest trees active period. Communicationes Instituti Forestalis Fenniae, 1972,76(3):1-110. |
[30] | Hänninen H. Modelling bud dormancy release in trees from cool and temperate regions. Acta Forestalia Fennica, 1990,213:1-47. |
[31] | Anderson J L, Richardson E, AKesner C D. Validation of chill unit and flower bud phenology models for "Montmorency" sour cherry. Acta Horticulturae, 1986,184:71-78. |
[32] | Luedeling E, Zhang M H, Luedeling V, et al. Sensitivity of winter chill models for fruit and nut trees to climatic changes expected in California's Central Valley. Agriculture Ecosystems & Environment, 2009,133(1/2):23-31. |
[33] | Vitasse Y, Basler D. What role for photoperiod in the bud burst phenology of European beech. European Journal of Forest Research, 2013,132(1):1-8. |
[34] | Fu Y, Piao S, Zhao H, et al. Unexpected role of winter precipitation in determining heat requirement for spring vegetation green-up at northern middle and high latitudes. Global Change Biology, 2014,20(12):3743-3755. |
[35] | Bennie J, Kubin E, Wiltshire A, et al. Predicting spatial and temporal patterns of bud-burst and spring frost risk in north-west Europe: The implications of local adaptation to climate. Global Change Biology, 2010,16(5):1503-1514. |
[36] |
Wilczek A, Burghardt L, Cobb A, et al. Genetic and physiological bases for phenological responses to current and predicted climates. Philosophical Transactions of the Royal Society of London, 2010,365:3129-3147.
doi: 10.1098/rstb.2010.0128 pmid: 20819808 |
[37] |
Singh R, Maurya J, Azeez A, et al. A genetic network mediating the control of bud break in hybrid aspen. Nature Communications, 2018,9:4173.
pmid: 30301891 |
[38] | Dai Junhu, Tao Zexing, Wang Huanjiong, et al. Applications of phenological models in quantitative climate reconstruction. Quaternary Science, 2016,36(3):702-710. |
[ 戴君虎, 陶泽兴, 王焕炯, 等. 物候模型在气候定量重建中的应用. 第四纪研究, 2016,36(3):702-710.] | |
[39] | Chen X Q, Wang L X, Inouye D. Delayed response of spring phenology to global warming in subtropics and tropics. Agricultural and Forest Meteorology, 2017, 234-235:222-235. |
[40] |
Ge Q S, Wang H J, Dai J H. Simulating changes in the leaf unfolding time of 20 plant species in China over the twenty-first century. International Journal of Biometeorology, 2014,58(4):473-484.
doi: 10.1007/s00484-013-0671-x pmid: 23689929 |
[41] | Zhong Shuying, Ge Quansheng, Dai Junhu, et al. Development of phenological models for simulating past flowering phenology of typical ornamental plants in China. Resources Science, 2017,39(11):2116-2129. |
[ 仲舒颖, 葛全胜, 戴君虎, 等. 中国典型观赏植物花期模型建立及过去花期变化模拟. 资源科学, 2017,39(11):2116-2129.] | |
[42] | Caffarra A, Donnelly A, Chuine I. Modelling the timing of Betula pubescens budburst. II. Integrating complex effects of photoperiod into process-based models. Climate Research, 2011,46(2):159-170. |