Acta Geographica Sinica ›› 2020, Vol. 75 ›› Issue (7): 1386-1405.doi: 10.11821/dlxb202007005
• Qinghai-Tibet Plateau and Human Activities • Previous Articles Next Articles
FENG Yuxue1,2(), LI Guangdong1,2(
)
Received:
2019-05-29
Revised:
2020-04-20
Online:
2020-07-25
Published:
2020-09-25
Contact:
LI Guangdong
E-mail:fengyx.18s@igsnrr.ac.cn;ligd@igsnrr.ac.cn
Supported by:
FENG Yuxue, LI Guangdong. Interaction between urbanization and eco-environment in Tibetan Plateau[J].Acta Geographica Sinica, 2020, 75(7): 1386-1405.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Comprehensive evaluation indexes of urbanization and index weight"
熵值法权重 | 层次分析法权重 | 综合 权重 | 指标层 | 熵值法权重 | 层次分析法权重 | 综合权重 | |
---|---|---|---|---|---|---|---|
人口城镇化 | 0.1991 | 0.1238 | 0.1582 | 城镇人口密度(人/km2) | 0.5461 | 0.3333 | 0.4130 |
城镇人口占比(%) | 0.5518 | 0.6667 | 0.5870 | ||||
经济城镇化 | 0.4027 | 0.3875 | 0.3981 | 人均地区生产总值(万元) | 0.2689 | 0.4704 | 0.3558 |
第二、三产值占GDP比重(%) | 0.2725 | 0.2797 | 0.2762 | ||||
财政收入占地区生产总值比重(%) | 0.2721 | 0.1142 | 0.1764 | ||||
全社会固定资产投资总额(万元) | 0.2699 | 0.1358 | 0.1916 | ||||
空间城镇化 | 0.1050 | 0.1011 | 0.1038 | 每万人城市建成区面积(km2) | 1.0000 | 1.0000 | 1.0000 |
社会城镇化 | 0.2996 | 0.3875 | 0.3398 | 城镇居民人均可支配收入(元) | 0.3695 | 0.5499 | 0.4369 |
每万人拥有卫生机构数量(个) | 0.3797 | 0.2098 | 0.2735 | ||||
社会消费品零售总额(万元) | 0.3719 | 0.2402 | 0.2896 |
Tab. 2
Comprehensive evaluation indexes of eco-environment and index weight"
准则层 | 熵值法权重 | 层次分析法权重 | 综合权重 | 指标层 | 熵值法权重 | 层次分析法权重 | 综合权重 |
---|---|---|---|---|---|---|---|
生态系统结构 | 0.3709 | 0.3145 | 0.3464 | 草地覆盖率(%)(+) | 0.2182 | 0.2234 | 0.2209 |
湿地占比(%)(+) | 0.2019 | 0.1829 | 0.1923 | ||||
森林覆盖率(%)(+) | 0.1677 | 0.1688 | 0.1684 | ||||
冰川占比(%)(+) | 0.1968 | 0.1829 | 0.1898 | ||||
植被覆盖指数(+) | 0.2155 | 0.2420 | 0.2285 | ||||
生态环境功能 | 0.1480 | 0.2845 | 0.2081 | 生态空间占比(%)(+) | 0.5412 | 0.4013 | 0.4707 |
生态系统服务价值(元)(+) | 0.4588 | 0.5987 | 0.5293 | ||||
生态环境压力 | 0.2470 | 0.2005 | 0.2257 | PM2.5平均浓度(μg)(-) | 0.3317 | 0.2702 | 0.3001 |
CO2排放量(万t)(-) | 0.3339 | 0.3528 | 0.3440 | ||||
生物栖息地侵占量(hm2)(-) | 0.3345 | 0.3771 | 0.3560 | ||||
生态环境格局 | 0.2341 | 0.2005 | 0.2197 | 景观破碎度(-) | 0.3446 | 0.3548 | 0.3502 |
景观连通性(+) | 0.3166 | 0.3548 | 0.3356 | ||||
景观多样性(+) | 0.3388 | 0.2905 | 0.3142 |
Tab. 3
Classification standards of coordinated development in urbanization and eco-environment"
大类 | 协调发展度 | 亚类 | F(x)与G(y)对比关系 | 基本类型 |
---|---|---|---|---|
协调发展类 | 0.60~1.00 | 协调发展类(Ⅳ) | F(x)-G(y) > 0.1 | 协调发展类生态环境滞后型(Ⅳ-1) |
|F(x)-G(y)| ≤ 0.1 | 协调发展类城镇化生态环境同步型(Ⅳ-2) | |||
G(y)-F(x) > 0.1 | 协调发展城镇化滞后型(Ⅳ-3) | |||
过渡类 | 0.50~0.59 | 勉强协调发展类(Ⅲ) | F(x)-G(y) > 0.1 | 勉强协调发展类生态环境滞后型(Ⅲ-1) |
|F(x)-G(y)| ≤ 0.1 | 勉强协调发展类城镇化生态环境同步型(Ⅲ-2) | |||
G(y)-F(x) > 0.1 | 勉强协调发展类城镇化滞后型(Ⅲ-3) | |||
0.40~0.49 | 濒临失调衰退类(Ⅱ) | F(x)-G(y) > 0.1 | 濒临失调衰退类生态环境滞后型(Ⅱ-1) | |
|F(x)-G(y)| ≤ 0.1 | 濒临失调衰退类城镇化生态环境共损型(Ⅱ-2) | |||
G(y)-F(x) > 0.1 | 濒临失调衰退类城镇化滞后型(Ⅱ-3) | |||
失调类 | 0.00~0.39 | 失调衰退类(Ⅰ) | F(x)-G(y) > 0.1 | 失调衰退类生态环境滞后型(Ⅰ-1) |
|F(x)-G(y)| ≤ 0.1 | 失调衰退类城镇化生态环境共损型(Ⅰ-2) | |||
G(y)-F(x) > 0.1 | 失调衰退类城镇化滞后型(Ⅰ-3) |
Tab. 5
Coupling types of urbanization and eco-environment in the Tibetan Plateau, Qinghai and Tibet"
2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | |
---|---|---|---|---|---|---|---|---|
青藏高原 | Ⅱ-3 | Ⅱ-3 | Ⅱ-3 | Ⅱ-3 | Ⅱ-3 | Ⅱ-3 | Ⅲ-3 | Ⅲ-3 |
青海省 | Ⅱ-3 | Ⅱ-3 | Ⅱ-3 | Ⅲ-3 | Ⅲ-3 | Ⅲ-3 | Ⅲ-3 | Ⅲ-3 |
西藏自治区 | Ⅱ-3 | Ⅱ-3 | Ⅱ-3 | Ⅱ-3 | Ⅱ-3 | Ⅱ-3 | Ⅱ-3 | Ⅲ-3 |
2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | |
青藏高原 | Ⅲ-3 | Ⅲ-3 | Ⅲ-3 | Ⅲ-3 | Ⅳ-3 | Ⅳ-3 | Ⅳ-2 | Ⅳ-2 |
青海省 | Ⅲ-3 | Ⅲ-3 | Ⅳ-2 | Ⅳ-2 | Ⅳ-2 | Ⅳ-2 | Ⅳ-1 | Ⅳ-1 |
西藏自治区 | Ⅲ-3 | Ⅲ-3 | Ⅲ-3 | Ⅲ-3 | Ⅳ-3 | Ⅳ-3 | Ⅳ-3 | Ⅳ-3 |
Tab. 6
The growth rates of eco-environment index and urbanization index and their decoupling relationship in the Tibetan Plateau"
年份 | ΔE | ΔU | DI | 脱钩程度 |
---|---|---|---|---|
2001 | -0.02 | 0.01 | -0.35 | 强脱钩 |
2002 | 0.00 | 0.01 | -0.06 | 弱脱钩 |
2003 | 0.00 | 0.01 | -0.02 | 弱脱钩 |
2004 | -0.02 | 0.01 | -0.44 | 强脱钩 |
2005 | 0.02 | 0.01 | 0.38 | 弱脱钩 |
2006 | 0.00 | 0.02 | -0.06 | 弱脱钩 |
2007 | 0.00 | 0.02 | -0.05 | 弱脱钩 |
2008 | -0.01 | 0.02 | -0.09 | 强脱钩 |
2009 | 0.00 | 0.02 | -0.04 | 弱脱钩 |
2010 | -0.02 | 0.03 | -0.23 | 强脱钩 |
2011 | 0.00 | 0.03 | 0.03 | 弱脱钩 |
2012 | -0.01 | 0.04 | -0.08 | 强脱钩 |
2013 | -0.03 | 0.04 | -0.39 | 强脱钩 |
2014 | -0.04 | 0.04 | -0.69 | 强脱钩 |
2015 | 0.05 | 0.04 | 0.86 | 扩张连接 |
Tab. 7
The growth rates of eco-environment index and urbanization index and their decoupling relationship in Qinghai and Tibet"
年份 | 地区 | ΔE | ΔU | DI | 状态 | 地区 | ΔE | ΔU | DI | 状态 |
---|---|---|---|---|---|---|---|---|---|---|
2001 | 青海 | -0.0214 | 0.0134 | -0.5817 | 强脱钩 | 西藏 | -0.0009 | 0.0172 | -0.0118 | 强脱钩 |
2002 | 青海 | 0.0041 | 0.0095 | 0.1747 | 弱脱钩 | 西藏 | -0.0073 | 0.0144 | -0.1317 | 强脱钩 |
2003 | 青海 | -0.0024 | 0.0101 | -0.0997 | 强脱钩 | 西藏 | 0.0041 | 0.0100 | 0.1176 | 弱脱钩 |
2004 | 青海 | -0.0234 | 0.0089 | -1.1814 | 强脱钩 | 西藏 | 0.0009 | 0.0094 | 0.0275 | 弱脱钩 |
2005 | 青海 | 0.0243 | 0.0152 | 0.7844 | 弱脱钩 | 西藏 | 0.0003 | 0.0072 | 0.0142 | 弱脱钩 |
2006 | 青海 | -0.0049 | 0.0178 | -0.1381 | 强脱钩 | 西藏 | -0.0006 | 0.0129 | -0.0159 | 强脱钩 |
2007 | 青海 | -0.0054 | 0.0214 | -0.1362 | 强脱钩 | 西藏 | -0.0016 | 0.0330 | -0.0167 | 强脱钩 |
2008 | 青海 | -0.0049 | 0.0231 | -0.1254 | 强脱钩 | 西藏 | -0.0018 | 0.0167 | -0.0437 | 强脱钩 |
2009 | 青海 | 0.0013 | 0.0229 | 0.0356 | 弱脱钩 | 西藏 | -0.0017 | 0.0188 | -0.0383 | 强脱钩 |
2010 | 青海 | -0.0146 | 0.0319 | -0.3197 | 强脱钩 | 西藏 | -0.0009 | 0.0251 | -0.0168 | 强脱钩 |
2011 | 青海 | 0.0034 | 0.0408 | 0.0662 | 弱脱钩 | 西藏 | -0.0004 | 0.0238 | -0.0094 | 强脱钩 |
2012 | 青海 | -0.0014 | 0.0421 | -0.0280 | 强脱钩 | 西藏 | -0.0028 | 0.0322 | -0.0481 | 强脱钩 |
2013 | 青海 | -0.0260 | 0.0400 | -0.6294 | 强脱钩 | 西藏 | -0.0029 | 0.0374 | -0.0463 | 强脱钩 |
2014 | 青海 | -0.0454 | 0.0414 | -1.2288 | 强脱钩 | 西藏 | -0.0096 | 0.0345 | -0.1862 | 强脱钩 |
2015 | 青海 | 0.0500 | 0.0404 | 1.6851 | 扩张负脱钩 | 西藏 | 0.0053 | 0.0536 | 0.0730 | 弱脱钩 |
Tab. 8
Prediction accuracies of future changes in coupling coordination degree of urbanization and eco-environment in the Tibetan Plateau"
预测单元 | 青藏高原 | 青海 | 西藏 | 阿里 | 昌都 | 果洛 | 海北 | 海东 | 海南 |
---|---|---|---|---|---|---|---|---|---|
平均相对误差(%) | 1.76 | 1.97 | 1.97 | 2.57 | 0.83 | 0.94 | 2.32 | 1.56 | 2.47 |
相对精度(%) | 98.24 | 98.02 | 98.04 | 97.42 | 99.16 | 99.06 | 97.67 | 98.44 | 97.53 |
C值 | 0.07 | 0.17 | 0.09 | 0.12 | 0.06 | 0.06 | 0.08 | 0.13 | 0.14 |
预测单元 | 海西 | 黄南 | 拉萨 | 林芝 | 那曲 | 日喀则 | 山南 | 西宁 | 玉树 |
平均相对误差(%) | 3.41 | 1.22 | 1.07 | 1.05 | 1.42 | 0.90 | 0.55 | 1.02 | 2.54 |
相对精度(%) | 96.58 | 98.77 | 98.93 | 98.95 | 98.57 | 99.10 | 99.45 | 98.98 | 97.47 |
C值 | 0.43 | 0.06 | 0.07 | 0.07 | 0.12 | 0.05 | 0.04 | 0.12 | 0.10 |
Tab. 9
Predictions of future changes in coupling coordination degree of urbanization and eco-environment in the Tibetan Plateau"
预测单元 | 青藏高原 | 青海 | 西藏 | 阿里 | 昌都 | 果洛 | 海北 | 海东 | 海南 |
---|---|---|---|---|---|---|---|---|---|
2020年预测值 | 0.81 | 0.76 | 0.78 | 0.84 | 0.69 | 0.81 | 0.81 | 0.68 | 0.75 |
2025年预测值 | 0.96 | 0.85 | 0.90 | 0.98 | 0.80 | 0.96 | 0.95 | 0.76 | 0.86 |
预测单元 | 海西 | 黄南 | 拉萨 | 林芝 | 那曲 | 日喀则 | 山南 | 西宁 | 玉树 |
2020年预测值 | 0.63 | 0.88 | 0.82 | 0.78 | 0.72 | 0.74 | 0.83 | 0.73 | 0.81 |
2025年预测值 | 0.64 | 0.90 | 0.93 | 0.90 | 0..81 | 0.86 | 0.97 | 0.81 | 0.99 |
[1] | Liu Tongde. Study on sustainable development in Qinghai-Tibet Plateau[D]. Tianjin: Tianjin University, 2009. |
[ 刘同德. 青藏高原区域可持续发展研究[D]. 天津: 天津大学, 2009.] | |
[2] | Lu Chunxia, Xie Gaodi, Xiao Yu, et al. Ecosystem diversity and economic valuation of Qinghai-Tibet Plateau. Acta Ecologica Sinica, 2004,24(12):2749-2755, 3011. |
[ 鲁春霞, 谢高地, 肖玉, 等. 青藏高原生态系统服务功能的价值评估. 生态学报, 2004,24(12):2749-2755, 3011.] | |
[3] | Yuan Fengdi, Zhang Xi, Wei Yongqiang. Study on ecological environment vulnerability assessment in the ecological barrier area of Qinghai-Tibet Plateau. Geospatial Information, 2018,16(4):67-69, 10. |
[ 袁烽迪, 张溪, 魏永强. 青藏高原生态屏障区生态环境脆弱性评价研究. 地理空间信息, 2018,16(4):67-69, 10.] | |
[4] | Zhao Yuelong, Zhang Lingjuan. A study on in dex and method of quantitative assessment of fragile environment. Progress in Geography, 1998,17(1):67-72. |
[ 赵跃龙, 张玲娟. 脆弱生态环境定量评价方法的研究. 地理科学进展, 1998,17(1):67-72.] | |
[5] | Yao Tandong, Zhu Liping. The response of environmental changes on Tibetan Plateau to global changes and adaptation strategy. Advances in Earth Science, 2006,25(5):459-464. |
[ 姚檀栋, 朱立平. 青藏高原环境变化对全球变化的响应及其适应对策. 地球科学进展, 2006,25(5):459-464.] | |
[6] | Li S C, Wu J S, Gong J, et al. Human footprint in Tibet: Assessing the spatial layout and effectiveness of nature reserves. Science of the Total Environment, 2018,621:18-29. |
[7] | Li S C, Zhang Y L, Wang Z F, et al. Mapping human influence intensity in the Tibetan Plateau for conservation of ecological service functions. Ecosystem Services, 2018,30:276-286. |
[8] | Chen H, Zhu Q A, Peng C H, et al. The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Global Chang Biology, 2013,19(10):2940-2955. |
[9] | Yang K, Wu H, Qin J, et al. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review. Global and Planetary Change, 2014,112:79-91. |
[10] | Lamsal P, Kumar L, Shabani F, et al. The greening of the Himalayas and Tibetan Plateau under climate change. Global and Planetary Change, 2017,159:77-92. |
[11] |
Cui X F, Graf H, Langmann B, et al. Climate impacts of anthropogenic land use changes on the Tibetan Plateau. Global and Planetary Change, 2006,54(1-2):33-56.
doi: 10.1016/j.gloplacha.2005.07.006 |
[12] | Kang S C, Zhang Q G, Qian Y, et al. Linking atmospheric pollution to cryospheric change in the Third Pole region: Current progress and future prospects. National Science Review, 2019,6(4):796-809. |
[13] |
Ma Y M, Ma W Q, Zhong L, et al. Monitoring and modeling the Tibetan Plateau's climate system and its impact on East Asia. Scientific Reports, 2017,7:44574.
pmid: 28287648 |
[14] | Ge J, You Q L, Zhang Y Q. Effect of Tibetan Plateau heating on summer extreme precipitation in eastern China. Atmospheric Research, 2019,218:364-371. |
[15] | Niu Yafei. The study of environment in the Plateau of Qinghai-Tibet. Progress in Geography, 1999,18(2):69-77. |
[ 牛亚菲. 青藏高原生态环境问题研究. 地理科学进展, 1999,18(2):69-77.] | |
[16] |
Wang X H, Zheng D, Shen Y C. Land use change and its driving forces on the Tibetan Plateau during 1990-2000. Catena, 2008,72(1):56-66.
doi: 10.1016/j.catena.2007.04.003 |
[17] | Cui X F, Graf H. Recent land cover changes on the Tibetan Plateau: A review. Climatic Change, 2009,94(1/2):47-61. |
[18] |
Liu J, Richard I, Marc W, et al. Protect Third Pole's fragile ecosystem. Science, 2018,362(6421):1368.
doi: 10.1126/science.aaw0443 pmid: 30573620 |
[19] | Fang Chuanglin, Li Guangdong. Particularities, gradual patterns and countermeasures of new-type urbanization in Tibet, China. Bulletin of Chinese Academy of Sciences, 2015,30(3):294-305. |
[ 方创琳, 李广东. 西藏新型城镇化发展的特殊性与渐进模式及对策建议. 中国科学院院刊, 2015,30(3):294-305.] | |
[20] | Xue Bing, Chen Xingpeng, Wu Junhui, et al. A study on the coupling relation and evolvement of the population-resources-environment in Qinghai Province. Journal of Lanzhou University (Natural Sciences), 2007(1):33-36. |
[ 薛冰, 陈兴鹏, 伍俊辉, 等. 青海人口—资源—环境关系的耦合演变研究. 兰州大学学报(自然科学版), 2007(1):33-36.] | |
[21] | Yang Haoran. Study on the coupling of eco-economic system in Qinghai Province. Qinghai Social Sciences, 2013(5):59-63, 68. |
[ 杨皓然. 青海省生态经济系统耦合分析. 青海社会科学, 2013(5):59-63, 68.] | |
[22] | Zhang Mingxia, Wang Dexiang. Measurement of coupling between urbanization and ecological environment in Qinghai Province. Qinghai Social Sciences, 2018(3):59-65. |
[ 张明霞, 王得祥. 青海城市化与生态环境耦合关系测度. 青海社会科学, 2018(3):59-65.] | |
[23] | Fan Jie, Xu Yong, Wang Chuansheng, et al. The effects of human activities on the ecological environment of Tibet over the past half century. Chinese Science Bulletin, 2015,60(32):3057-3066. |
[ 樊杰, 徐勇, 王传胜, 等. 西藏近半个世纪以来人类活动的生态环境效应. 科学通报, 2015,60(32):3057-3066.] | |
[24] |
Cao Shisong, Wang Yanhui, Duan Fuzhou, et al. Coupling between ecological vulnerability and economic poverty in contiguous destitute areas, China: Emprical analysis of 714 povetry-stricken countries. Chinese Journal of Applied Ecology, 2016,27(8):2614-2622.
doi: 10.13287/j.1001-9332.201608.020 pmid: 29733150 |
[ 曹诗颂, 王艳慧, 段福洲, 等. 中国贫困地区生态环境脆弱性与经济贫困的耦合关系: 基于连片特困区714个贫困县的实证分析. 应用生态学报, 2016,27(8):2614-2622.]
pmid: 29733150 |
|
[25] | Wang Zhonghua. Research on the coupling of ecological construction and economic development in the minority areas of our country[D]. Harbin: Northeast Forestry University, 2005. |
[ 汪中华. 我国民族地区生态建设与经济发展的耦合研究[D]. 哈尔滨: 东北林业大学, 2005.] | |
[26] | The State Council Information Office of the People's Republic of China. Ecological Progress on the Qinghai-Tibet Plateau. 2018. |
[ 中华人民共和国国务院新闻办公室. 青藏高原生态文明建设状况. 2018.] | |
[27] | Xie Gaodi, Zhang Caixia, Zhang Leiming, et al. Improvement of the evaluation method for ecosystem service value based on per unit area. Journal of Natural Resources, 2015,30(8):1243-1254. |
[ 谢高地, 张彩霞, 张雷明, 等. 基于单位面积价值当量因子的生态系统服务价值化方法改进. 自然资源学报, 2015,30(8):1243-1254.] | |
[28] |
Wang Y, Li G D. Mapping urban CO2 emissions using DMSP/OLS "city lights" satellite data in China. Environment and Planning A: Economy and Space, 2016,49(2):248-251.
doi: 10.1177/0308518X16656374 |
[29] | Liang Longwu, Wang Zhenbo, Fang Chuanglin, et al. Spatiotemporal differentiation and coordinated development pattern of urbanization and the ecological environment of the Beijing-Tianjin-Hebei urban agglomeration. Acta Ecologica Sinica, 2019,39(4):1212-1225. |
[ 梁龙武, 王振波, 方创琳, 等. 京津冀城市群城市化与生态环境时空分异及协同发展格局. 生态学报, 2019,39(4):1212-1225.] | |
[30] | Tang Ling, Li Jianping, Yu Lean, et al. Quantitative evaluation methodology for system coordination development based on distance coordnation degree model. Systems Engineering-Theory & Practice, 2010,30(4):594-602. |
[ 汤铃, 李建平, 余乐安, 等. 基于距离协调度模型的系统协调发展定量评价方法. 系统工程理论与实践, 2010,30(4):594-602.] | |
[31] | Liao Zhongbin. Quantitaitve judgement and classification system for coordinated development of environment amd economy: A case study of the city group in the Pearl River Delta. Tropical Geography, 1999,19(2):76-82. |
[ 廖重斌. 环境与经济协调发展的定量评判及其分类体系: 以珠江三角洲城市群为例. 热带地理, 1999,19(2):76-82.] | |
[32] | Guo Shasha, Chen Mingxing, Liu Hui. Coupling procedure and decoupling analysis of urbanization and resource environment: The study of Beijing. Geographical Research, 2018,37(8):1599-1608. |
[ 郭莎莎, 陈明星, 刘慧. 城镇化与资源环境的耦合过程与解耦分析: 以北京为例. 地理研究, 2018,37(8):1599-1608.] | |
[33] |
Tapio P. Towards a theory of decoupling: Degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001. Transport Policy, 2005,12(2):137-151.
doi: 10.1016/j.tranpol.2005.01.001 |
[34] | Li Tan, Wang Jing, Zhang Qingguo, et al. Spatiotemporal characteristics of an ecological footprint, decoupling effect tendency, and grey prediction in Hefei city. Acta Ecologica Sinica, 2019,39(5):1735-1747. |
[ 李坦, 王静, 张庆国, 等. 合肥市生态足迹时空特征与脱钩效应变化及灰色预测分析. 生态学报, 2019,39(5):1735-1747.] | |
[35] | Zhou Cheng, Feng Xuegang, Tang Rui. Analysis and forecast of coupling coordination development among the regional economy-ecological environment-tourism industry: A case study of provinces along the Yangtze Economic Zone. Economic Geography, 2016,36(3):186-193. |
[ 周成, 冯学钢, 唐睿. 区域经济—生态环境—旅游产业耦合协调发展分析与预测: 以长江经济带沿线各省市为例. 经济地理, 2016,36(3):186-193.] |
[1] | REN Yufei, FANG Chuanglin, LI Guangdong, SUN Si'ao, BAO Chao, LIU Ruowen. Progress in local and tele-coupling relationship between urbanization and eco-environment [J]. Acta Geographica Sinica, 2020, 75(3): 589-606. |
[2] | QI Wei, LIU Shenghe, ZHOU Liang. Regional differentiation of population in Tibetan Plateau: Insight from the "Hu Line" [J]. Acta Geographica Sinica, 2020, 75(2): 255-267. |
[3] | GAO Xing, KANG Shichang, LIU Qingsong, CHEN Pengfei, DUAN Zongqi. Magnetic characteristics of Qiangyong Co Lake sediments, southern Tibetan Plateau and its environmental significance during 1899-2011 [J]. Acta Geographica Sinica, 2020, 75(1): 68-81. |
[4] | ZHANG Jie, SHI Peijun, YANG Jing, GONG Daoyi. The impact of the urbanization process on rainfall in Beijing:A case study of 7.21 rainstorm [J]. Acta Geographica Sinica, 2020, 75(1): 113-125. |
[5] | ZHANG Kaihuang, QIAN Qinglan, YANG Qingsheng. An analysis of multilevel variables influencing China's land urbanization process [J]. Acta Geographica Sinica, 2020, 75(1): 179-193. |
[6] | FAN Keke, ZHANG Qiang, SUN Peng, SONG Changqing, YU Huiqian, ZHU Xiudi, SHEN Zexi. Effect of soil moisture variation on near-surface air temperature over the Tibetan Plateau [J]. Acta Geographica Sinica, 2020, 75(1): 82-97. |
[7] | XIE Linhuan, JIANG Tao, CAO Yingjie, ZHANG Desheng, LI Kun, TANG Changyuan. Characteristics of hydrogen and oxygen isotopes in precipitation and runoff and flood hydrograph separation in an urbanized catchment [J]. Acta Geographica Sinica, 2019, 74(9): 1733-1744. |
[8] | LIU Haimeng, FANG Chuanglin, LI Yonghong. The Coupled Human and Natural Cube: A conceptual framework for analyzing urbanization and eco-environment interactions [J]. Acta Geographica Sinica, 2019, 74(8): 1489-1507. |
[9] | TONG Biao, DANG Anrong, XU Jian. A historical study on the patterns of spatio-temporal evolution of towns in the Wuding River Basin [J]. Acta Geographica Sinica, 2019, 74(8): 1508-1524. |
[10] | ZHUANG Liang,YE Chao,MA Wei,ZHAO Biao,HU Senlin. Production of space and developmental logic of New Urban Districts in China [J]. Acta Geographica Sinica, 2019, 74(8): 1548-1562. |
[11] | GUO Chao,MENG Hongwei,MA Yuzhen,LI Dandan,HU Caili,LIU Jierui,LUO Congwen,WANG Kai. Environmental variations recorded by chemical element in the sediments of Lake Yamzhog Yumco on the southern Tibetan Plateau over the past 2000 years [J]. Acta Geographica Sinica, 2019, 74(7): 1345-1362. |
[12] | WU Yijin,ZHAO Xingshuang,XI Yue,LIU Hui,LI Chang. Comprehensive evaluation and spatial-temporal changes of eco-environmental quality based on MODIS in Tibet during 2006-2016 [J]. Acta Geographica Sinica, 2019, 74(7): 1438-1449. |
[13] | CUI Xuegang,FANG Chuanglin,LIU Haimeng,LIU Xiaofei,LI Yonghong. Dynamic simulation of urbanization and eco-environment coupling: A review on theory, methods and applications [J]. Acta Geographica Sinica, 2019, 74(6): 1079-1096. |
[14] | Mingxing CHEN, Chao YE, Dadao LU, Yuwen SUI, Shasha GUO. Cognition and construction of the theoretical connotation for new-type urbanization with Chinese characteristics [J]. Acta Geographica Sinica, 2019, 74(4): 633-647. |
[15] | Shuaibin LIU, Shan YANG, Zhao WANG. Characteristics and formation mechanism of China's provincial urbanization spatial correlation based on population flow [J]. Acta Geographica Sinica, 2019, 74(4): 648-663. |