Acta Geographica Sinica ›› 2020, Vol. 75 ›› Issue (7): 1373-1385.doi: 10.11821/dlxb202007004
• Qinghai-Tibet Plateau and Human Activities • Previous Articles Next Articles
LIANG Xinyue1,2,5(), XU Mengzhen2, LYU Liqun2,3, CUI Yifei2, ZHANG Fengbao1,4
Received:
2019-11-02
Revised:
2020-05-27
Online:
2020-07-25
Published:
2020-09-25
Contact:
ZHANG Fengbao
E-mail:liangxinyue17@mails.ucas.edu.cn
Supported by:
LIANG Xinyue, XU Mengzhen, LYU Liqun, CUI Yifei, ZHANG Fengbao. Geomorphological characteristics of debris flow gullies on the edge of the Qinghai-Tibet Plateau[J].Acta Geographica Sinica, 2020, 75(7): 1373-1385.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Main factors affecting the occurrence of debris flows
地貌参数 | 公式 | 公式释意 |
---|---|---|
面积(A) | 通过ArcGIS水文分析模块提取 | 面积是泥石流物源条件的反映,面积较大的沟谷有更多滑坡、崩塌为泥石流发生提供松散物质。 |
坡度(S) | Hh为岩体垂直高度;Lh为水平长度。坡度反映松散物补给方式和汇流速度,坡度越陡,松散物越容易启动。 | |
主沟长度(L) | 通过ArcGIS水文分析模块提取 | 主沟越长,越利于增加水量,接纳和搬运的松散碎屑物越多。 |
比降(G) | ||
高差(RA) | hmax和hmin分别是流域内的最高和最低海拔;RA表示切口深度和地表剥蚀程度,反映流域构造活动强度和能量条件。高差越大,越易发生泥石流。 | |
沟谷形状指数(Rf) | Rf反映沟谷的汇水和水动力条件。Rf大,沟道中洪峰流量越大,越有利松散物质的起动。 | |
面积—高程积分值(HI) | hmean表示是流域内的平均海拔。HI反映流域受侵蚀程度,HI越大,表明流域演化阶段越年轻,可蚀性越大。 | |
纵剖面形态指数(N) | h及l:纵剖面上某点与河口的高差及距离;H及L:河源与河口之间的高差及水平距离;N反映泥石流发育地貌条件,可将泥石流分为幼年期、壮年期和老年期。 | |
沟壑密度(GD) | L总为沟谷河流的总长;GD反映流域发育的完善程度。沟壑密度越大的地区,不稳定面越多,边坡稳定性越弱,发生泥石流的可能性也越大 | |
植被覆盖度(FVC) | NDVIsoil是裸土或者无植被覆盖区域的NDVI;NDVIveg是完全被植被覆盖的NDVI。通常植被覆盖度越高,坡面越稳定。 |
[1] | Liu C N, Dong J J, Peng Y F, et al. Effects of strong ground motion on the susceptibility of gully type debris flows. Engineering Geology, 2009,104(3):241-253. |
[2] |
Chang T C, Chao R J. Application of back-propagation networks in debris flow prediction. Engineering Geology, 2006,85(3):270-280.
doi: 10.1016/j.enggeo.2006.02.007 |
[3] | Gao J, Sang Y. Identification and estimation of landslide-debris flow disaster risk in primary and middle school campuses in a mountainous area of Southwest China. International Journal of Disaster Risk Reduction, 2017,25:60-71. |
[4] | Zhao Y, Meng X, Qi T, et al. AI-based identification of low-frequency debris flow catchments in the Bailong River basin, China. Geomorphology, 2020: 107125. Doi: 10.1016/j.geomorph.2020.107125. |
[5] | Zou Q, Cui P, He J, et al. Regional risk assessment of debris flows in China: An HRU-based approach. Geomorphology, 2019,340:84-102. |
[6] |
Melo R, Zêzere J L, Oliveira S C, et al. Defining evacuation travel times and safety areas in a debris flow hazard scenario. Science of the Total Environment, 2020,712:136452. Doi: 10.1016/j.scitotenv.2019.136452.
doi: 10.1016/j.scitotenv.2019.136452 pmid: 31931203 |
[7] | Rodríguez Morata C, Villacorta S, Stoffel M, et al. Assessing strategies to mitigate debris-flow risk in Abancay province, south-central Peruvian Andes. Geomorphology, 2019,342:127-139. |
[8] | Miao C, Liu X. Characterization of acceptable risk for debris flows in China: Comparison in debris-flow prone areas and nonprone areas. International Journal of Disaster Risk Reduction, 2020,42:101405. Doi: 10.1016/j.ijdrr. 2019.101405. |
[9] | Liu X, Miao C, Guo L. Acceptability of debris-flow disasters: Comparison of two case studies in China. International Journal of Disaster Risk Reduction, 2019,34:45-54. |
[10] | Winter M G. A strategic approach to debris flow risk reduction on the road network. Procedia Engineering, 2016,143:759-768. |
[11] | Chen H X, Li J, Feng S J, et al. Simulation of interactions between debris flow and check dams on three-dimensional terrain. Engineering Geology, 2019,251:48-62. |
[12] | Cucchiaro S, Cazorzi F, Marchi L, et al. Multi-temporal analysis of the role of check dams in a debris-flow channel: Linking structural and functional connectivity. Geomorphology, 2019,345:106844. Doi: 10.1016/j.geomorph. 2019.106844. |
[13] | Zhao Yan, Meng Xingmin, Zheng Jiaoyu. Application of geomorphological theory in study of debris flow and exploration of its applied theory. Journal of Catastrophology, 2017,32(1):43-49. |
[ 赵岩, 孟兴民, 郑娇玉, 等. 地貌学在泥石流研究中的应用与理论初探. 灾害学, 2017,32(1):43-49.] | |
[14] | Singh P, Gupta A, Singh M. Hydrological inferences from watershed analysis for water resource management using remote sensing and GIS techniques. The Egyptian Journal of Remote Sensing and Space Science, 2014,17(2):111-121. |
[15] | Zhang P Z, Shen Z K, Wang M, et al. Continuous deformation of the Tibetan Plateau from Global Positioning System Data. Geology, 2004,32(9):809-812. |
[16] | Wang Z. Geological environment and sisasters along railway line in the Qinghai-Tibet Plateau. Earth Science Frontiers, 2007,14(6):31-37. |
[17] | Huang Jiangcheng, Ou Guoqiang, Pan Huali. Geomorphic evolution of comparison on debris flow gullies in Bailongjiang and Xiaojiang basins. The Chinese Journal of Geological Hazard and Control, 2014,25(1):6-11. |
[ 黄江成, 欧国强, 潘华利. 白龙江与小江泥石流流域地貌演化比较分析. 中国地质灾害与防治学报, 2014,25(1):6-11.] | |
[18] | Yao Tandong, Yu Wusheng, Wu Guangjian, et al. Glacier anomalies and relevant disaster risks on the Tibetan Plateau and surroundings. Chinese Science Bulletin, 2019,64(27):2770-2782. |
[ 姚檀栋, 余武生, 邬光剑, 等. 青藏高原及周边地区近期冰川状态失常与灾变风险. 科学通报, 2019,64(27):2770-2782.] | |
[19] | Seong Y B, Owen L A, Yi C, et al. Geomorphology of anomalously high glaciated mountains at the northwestern end of Tibet: Muztag Ata and Kongur Shan. Geomorphology, 2009,103(2):227-250. |
[20] | Wang Jie, Zhou Shangzhe, Zhao Jingdong, et al. Quaternary glacial geomorphology and glaciations of Kongur Mountain, eastern Pamir, China. Scientia Sinica (Terrae), 2011,41(3):350-361. |
[ 王杰, 周尚哲, 赵井东, 等. 东帕米尔公格尔山地区第四纪冰川地貌与冰期. 中国科学: 地球科学, 2011,41(3):350-361.] | |
[21] | Winiger M, Gumpert M, Yamout H. Karakorum-Hindukush-western Himalaya: Assessing high-altitude water resources. Hydrological Processes, 2005,19(12):2329-2338. |
[22] | Zhao Xin, Cheng Zunlan, Liu Jiankang, et al. Hazard degree assessment on site-specific debris flows in Dongchuan of Yunnan Province. Journal of Catastrophology, 2013,28(1):102-106. |
[ 赵鑫, 程尊兰, 刘建康, 等. 云南东川地区单沟泥石流危险度评价研究. 灾害学, 2013,28(1):102-106.] | |
[23] | Du Jun, Wang Zhaoyin, Li Zhiwei, et al. A preliminary study on spinulose stream networks in the Tongde Basin of the Yellow River source. Journal of Arid Land Resources and Environment, 2014,28(2):129-135. |
[ 杜俊, 王兆印, 李志威, 等. 黄河源同德盆地刺状水系初步研究. 干旱区资源与环境, 2014,28(2):129-135.] | |
[24] | Yang Dayuan, Wu Shengguang, Wang Yunfei. On river terraces of the upper reaches of the Huanghe River and change of the river system. Scientia Geographica Sinica, 1996,16(2):137-143. |
[ 杨达源, 吴胜光, 王云飞. 黄河上游的阶地与水系变迁. 地理科学, 1996,16(2):137-143.] | |
[25] | Singh P, Thakur J K, Singh U. Morphometric analysis of Morar River Basin, Madhya Pradesh, India, using remote sensing and GIS techniques. Environmental Earth Sciences, 2013,68(7):1967-1977. |
[26] | Dai F C, Lee C F. Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology, 2002,42(3):213-228. |
[27] | Abdallah C, Chorowicz J, Bou Kheir R, et al. Detecting major terrain parameters relating to mass movements' occurrence using GIS, remote sensing and statistical correlations, case study Lebanon. Remote Sensing of Environment, 2005,99(4):448-461. |
[28] | Wan S, Lei T C, Huang P C, et al. The knowledge rules of debris flow event: A case study for investigation Chen Yu Lan River, Taiwan. Engineering Geology, 2008,98(3):102-114. |
[29] | Pike R, Wilson S. Elevation-relief ratio, hypsometric integral, and geomorphic area-altitude analysis. Geological Society of America Bulletin, 1971,82(4):1079-1084. |
[30] | Jiang Zhongxin. A statistical analysis on longitudinal profile shape of debris flow valley along Palongzangbu River in Tibet. The Chinese Journal of Geological Hazard and Control, 2001,12(4):41-47. |
[ 蒋忠信. 西藏帕隆藏布泥石流沟谷纵剖面形态统计分析. 中国地质灾害与防治学报, 2001,12(4):41-47.] | |
[31] | Basu T, Pal S. RS-GIS based morphometrical and geological multi-criteria approach to the landslide susceptibility mapping in Gish River Basin, West Bengal, India. Advances in Space Research, 2019,63(3):1253-1269. |
[32] | Li Zhiqiang, Li Weiquan, Chen Zishen, et al. Influencing factors and classifications of arc-shaped coasts in South China. Acta Geographica Sinica, 2014,69(5):595-606. |
[ 李志强, 李维泉, 陈子燊, 等. 华南岬间弧形海岸平面形态影响因素及类型. 地理学报, 2014,69(5):595-606.] | |
[33] | Yang Zhigang, Zhuoma, Lu Hongya, et al. Characteristics of precipitation variation and its effects on runoff in the Yanglung Zangbo River basin during 1961-2010. Journal of Glaciology and Geocryology, 2014,36(1):166-172. |
[ 杨志刚, 卓玛, 路红亚, 等. 1961—2010年西藏雅鲁藏布江流域降水量变化特征及其对径流的影响分析. 冰川冻土, 2014,36(1):166-172.] | |
[34] | Zhang Wancheng, Xiao Ziniu, Zheng Jianmeng, et al. Characteristics of the Nujiang River runoff for a long term and its response to climate change. Chinese Science Bulletin, 2007,52(Suppl.II):135-141. |
[ 张万诚, 肖子牛, 郑建萌, 等. 怒江流量长期变化特征及对气候变化的响应. 科学通报, 2007,52(增刊II):135-141.] | |
[35] |
Tate E L, Farquharson F A K. Simulating reservoir management under the threat of sedimentation: The case of Tarbela Dam on the River Indus. Water Resources Management, 2000,14(3):191-208.
doi: 10.1023/A:1026579230560 |
[36] | Tang C, Jiang Z, Li W. Seismic landslide evolution and debris flow development: A case study in the Hongchun Catchment, Wenchuan area of China. Engineering Geology for Society and Territory, 2015,2:445-449. |
[37] | Tang C, Zhu J, Li W L, et al. Rainfall-triggered debris flows following the Wenchuan earthquake. Bulletin of Engineering Geology and the Environment, 2009,68(2):187-194. |
[38] | Xu M, Wang Z, Qi L, et al. Disaster chains initiated by the Wenchuan earthquake. Environmental Earth Sciences, 2012,65(4):975-985. |
[39] | Wang Z, Cui P, Wang R. Mass movements triggered by the Wenchuan earthquake and management strategies of quake lakes. International Journal of River Basin Management, 2009,7(4):391-402. |
[40] | Cui Peng, Wei Fangqiang, Chen Xiaoqing, et al. Geo-hazards in Wenchuan earthquake area and countermeasures for disaster reduction. Bulletin of the Chinese Academy of Sciences, 2008,23(4):317-323. |
[ 崔鹏, 韦方强, 陈晓清, 等. 汶川地震次生山地灾害及其减灾对策. 中国科学院院刊, 2008,23(4):317-323.] | |
[41] | Tang Chuan. Activity tendency prediction of rainfall induced landslides and debris flows in the Wenchuan Earthquake areas, Mountain Research, 2010,28(3):341-349. |
[ 唐川. 汶川地震区暴雨滑坡泥石流活动趋势预测. 山地学报, 2010,28(3):341-349.] | |
[42] | Cheng W, Wang N, Zhao M, et al. Relative tectonics and debris flow hazards in the Beijing mountain area from DEM-derived geomorphic indices and drainage analysis. Geomorphology, 2016,257:134-142. |
[43] | Hack J T. Stream-profile analysis and stream-gradient index. Journal Research of United States Geological Survey, 1973,1(4):421-429. |
[44] | Seeber L, Gornitz V. River profiles along the Himalayan arc as indicators of active tectonics. Tectonophysics, 1983,92(4):335-367. |
[45] | Nefeslioglu H A, Duman T Y, Durmaz S. Landslide susceptibility mapping for a part of tectonic Kelkit Valley (Eastern Black Sea region of Turkey). Geomorphology, 2008,94(3):401-418. |
[46] | Gokceoglu C, Sonmez H, Nefeslioglu H A, et al. The 17 March 2005 Kuzulu landslide (Sivas, Turkey) and landslide-susceptibility map of its near vicinity. Engineering Geology, 2005,81(1):65-83. |
[47] | Kim S, Sharma A. The role of floodplain topography in deriving basin discharge using passive microwave remote sensing. Water Resources Research, 2019,55(2):1707-1716. |
[48] | Lyu Liqun, Wang Zhaoyin, Xu Mengzhen, et al. Geomorphic characters of debris flow fans along Nu River and the river blocking mechanisms. Journal of Hydraulic Engineering, 2016,47(10):1245-1252. |
[ 吕立群, 王兆印, 徐梦珍, 等. 怒江泥石流扇地貌特征与扇体堵江机理研究. 水利学报, 2016,47(10):1245-1252.] | |
[49] |
Comiti F, Mao L, Penna D, et al. Glacier melt runoff controls bedload transport in alpine catchments. Earth and Planetary Science Letters, 2019,520:77-86.
doi: 10.1016/j.epsl.2019.05.031 |
[50] | Wang C, Guo Y. Precipitable water conversion rates over the Qinghai-Xizang (Tibet) Plateau: Changing characteristics with global warming. Hydrological Processes, 2012,26:1509-1516. |
[51] | Yao Tandong, Wu Guangjian, Xu Baiqing, et al. Asian water tower change and its impacts. Bulletin of the Chinese Academy of Sciences, 2019,34(11):1203-1209. |
[ 姚檀栋, 邬光剑, 徐柏青, 等. “亚洲水塔”变化与影响. 中国科学院院刊, 2019,34(11):1203-1209.] | |
[52] | Xu Fei, Jia Yangwen, Niu Cunwen, et al. Variation character of annual, seasonal and monthly temperature and precipitation. Mountain Research, 2018,36(2):171-183. |
[ 徐飞, 贾仰文, 牛存稳, 等. 横断山区气温和降水年季月变化特征. 山地学报, 2018,36(2):171-183.] | |
[53] | Li Lin, Li Xiaodong, Xiao Ruixiang, et al. The heterogeneity of climate change and its genesis in the northeastern Qinghai-Tibet Plateau. Journal of Natural Resources, 2019,34(7):1496-1505. |
[ 李林, 李晓东, 校瑞香, 等. 青藏高原东北部气候变化的异质性及其成因. 自然资源学报, 2019,34(7):1496-1505.] |
[1] | HOU Guangliang, , ZHU Yan, PANG Longhui. Communication route and its evolution on the Qinghai-Tibet Plateau during the prehistoric time [J]. Acta Geographica Sinica, 2021, 76(5): 1294-1313. |
[2] | HUANG Hai, TIAN You, LIU Jiankang, ZHANG Jiajia, YANG Dongxu, YANG Shun. The mechanism and sensitivity analysis of soil freeze-thaw erosion on slope in eastern Tibet [J]. Acta Geographica Sinica, 2021, 76(1): 87-100. |
[3] | SUN Siao, WANG Jing, QI Wei. Urban-and-rural virtual water trade of Qinghai-Tibet Plateau: Patterns and influencing factors [J]. Acta Geographica Sinica, 2020, 75(7): 1346-1358. |
[4] | FENG Zhiming, LI Wenjun, LI Peng, XIAO Chiwei. Relief degree of land surface and its geographical meanings in the Qinghai-Tibet Plateau, China [J]. Acta Geographica Sinica, 2020, 75(7): 1359-1372. |
[5] | XU Jun, XU Yang, HU Lei, WANG Zhenbo. Discovering spatio-temporal patterns of human activity on the Qinghai-Tibet Plateau based on crowdsourcing positioning data [J]. Acta Geographica Sinica, 2020, 75(7): 1406-1417. |
[6] | WANG Nan, WANG Huimeng, DU Yunyan, YI Jiawei, LIU Zhang, TU Wenna. Spatiotemporal patterns of in- and out-bound population flows of the Qinghai-Tibet Plateau [J]. Acta Geographica Sinica, 2020, 75(7): 1418-1431. |
[7] | GAO Xingchuan,CAO Xiaoshu,LI Tao,LV Minjuan. Evolution of accessibility spatial pattern of the Qinghai-Tibet Plateau in 1976-2016 [J]. Acta Geographica Sinica, 2019, 74(6): 1190-1204. |
[8] | TIAN Yuan,YU Chengqun,ZHA Xinjie,GAO Xing,YU Mingzhai. Hydrochemical characteristics and factors controlling of natural water in the western, southern, and northeastern border areas of the Qinghai-Tibet Plateau [J]. Acta Geographica Sinica, 2019, 74(5): 975-991. |
[9] | FAN Zemeng,HUANG Yan,YUE Tianxiang. Scenarios simulation of vascular plant species abundance distribution on Qinghai-Tibet Plateau [J]. Acta Geographica Sinica, 2018, 73(1): 164-176. |
[10] | Shaohong WU, Dongsheng ZHAO, Yunhe YIN, Qinye YANG, Xueqin ZHANG. Continuation and innovation of integrated studies in physical geography [J]. Acta Geographica Sinica, 2016, 71(9): 1484-1493. |
[11] | Guangliang HOU, Guangchao CAO, Chongyi E, Xiaoyan REN, B Wuennemann, Fan LI. New evidence of human activities at an altitude of 4000 meters area of Qinghai-Tibet Plateau [J]. Acta Geographica Sinica, 2016, 71(7): 1231-1240. |
[12] | LIU Chuang, SHI Ruixiang, CHEN Wenbo. Global change research data publishing and repository [J]. Acta Geographica Sinica, 2014, 69(s1): 3-11. |
[13] | LIU Chuang, SHI Ruixiang, LV Tingting, CHEN Wenbo, ZHOU Xiang, WANG Zhengxing. Eco-regional boundary data of the Roof of the World [J]. Acta Geographica Sinica, 2014, 69(s1): 12-19. |
[14] | LIU Chuang, SHI Ruixiang, LV Tingting, CHEN Wenbo, WANG Zhengxing, ZHOU Xiang. Elevation cluster dataset covering the eco-region of the Roof of the World [J]. Acta Geographica Sinica, 2014, 69(s1): 20-24. |
[15] | WANG Liang, XU Xinliang, LIU Luo. Pollutant coefficients data of livestock industry at provincial level in China [J]. Acta Geographica Sinica, 2014, 69(s1): 57-60. |