Acta Geographica Sinica ›› 2020, Vol. 75 ›› Issue (5): 1036-1052.doi: 10.11821/dlxb202005011
• Climate Change and Surface Process • Previous Articles Next Articles
SHI Haiyang1,2, LUO Geping1,2(), ZHENG Hongwei1,2, CHEN Chunbo1, BAI Jie1, LIU Tie1,2
Received:
2019-02-12
Revised:
2020-02-10
Online:
2020-05-25
Published:
2020-07-25
Contact:
LUO Geping
E-mail:luogp@ms.xjb.ac.cn
Supported by:
SHI Haiyang, LUO Geping, ZHENG Hongwei, CHEN Chunbo, BAI Jie, LIU Tie. Water use analysis of Syr Darya river basin: Based on "Water-Energy-Food-Ecology" nexus and Bayesian network[J].Acta Geographica Sinica, 2020, 75(5): 1036-1052.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Data sources
数据种类 | 时间 | 数据说明 | 来源 | |
---|---|---|---|---|
径流量 | 1970—2015年 | 水文站点数据, 日尺度和年尺度 | https://www.bafg.de/GRDC (1970—1989年) http://www.cawater-info.net/water_quality_in_ca/syr_e.htm (1911—2016年) | |
降水 | 1970—2015年 | 气象站点数据, 日尺度 | https://www.ncdc.noaa.gov | |
干旱指数 | 1979—2015年 | 遥感模型反演数据产品, 日尺度, 分辨率0.04°×0.04° | https://developers.google.com/earth-engine/datasets/catalog/IDAHO_ EPSCOR_PDSI | |
水库运行 | 1974—2015年 | 月尺度 | Siegfried T [ http://www.icwc-aral.uz(2007—2015年) | |
用水 能源 | 1970—2015年 1991—2015年 | 年尺度和州尺度 年尺度和国家尺度 | https://www.cawater-info.net https://www.ceicdata.com | |
社会经济 | 1970—2015年 | 统计公报 年尺度和州尺度 | http://stat.gov.kz (2003—2015年), http://www.stat.kg (2012—2015年) https://stat.uz/uz(2000—2015年), https://data.worldbank.org.cnhttp://www.fao.org/statistics, 苏联国民经济统计年鉴(1960—1987年), 独联体统计委员会数据库(1992—2010年) | |
咸海水情 | 1970—2015年 | https://www.cawater-info.net | ||
生态指标 | 1980—2010年 | https://www.cawater-info.net, Micklin P [ |
Tab. 2
Detailed explanations and status discretization of important variables
变量 | 解释 | 状态分级 | 单位 |
---|---|---|---|
年径流量 | 乌奇库尔干等站 | 280~360, 360~440, 440~650 | 108 m3 |
下游降水量 | 克孜勒奥尔达、费尔干纳、吉扎克等地区气象站均值 | 170~190, 190~210, 210~230 | mm |
下游干旱指数PDSI | -8~-4, -4~0, 0~6 | ||
上游水库蓄水量 | 托克托古尔水库 | 0~6, 6~12, 12~20 | km3 |
水库夏季放水量 | 1800~2800, 2800~3800, 3800~4800 | 106 m3 | |
水库冬季放水量 | 3500~3800, 3800~4200, 4200~4500 | 106 m3 | |
上游水力发电量 | 0.3~0.8, 0.8~1.2, 1.2~1.5 | 1010 kW·h | |
上游进口天然气量 | 从下游进口 | 0~1, 1~2, 2~3 | 109 m3 |
下游棉花种植面积 | 700~750, 750~800, 800~850 | 103 ha | |
下游棉花产量 | 1100~2200, 2200~3300, 3300~4400 | 103 t | |
下游粮食作物种植面积 | 1000~1100, 1100~1200, 1200~1300 | 103 hm2 | |
下游粮食产量 | 1500~2500, 2500~3500, 3500~4500 | 103 t | |
下游大牲畜量 | 牛、羊数量 | 7000~10000, 10000~13000, 13000~16000 | 103头 |
下游灌溉定额 | 9500~10000, 10000~10500, 10500~11000 | m3/hm2 | |
下游总用水量 | 33~35, 35~37, 37~40 | km3 | |
流入洼地水量 | 流入Arnasay洼地水量 | 1.5~4.5, 4.5~6.5, 6.5~8.5 | km3 |
下游农业产值 | 2~4, 4~6, 6~8 | 109 US$ | |
下游总产值 | 10~30, 30~50, 50~70 | 109 US$ | |
下游人口 | 14~16, 16~18, 18~20 | 106人 | |
咸海入湖水量 | 卡扎林斯克站 | 2.5~4, 4~5, 5~6.5 | km3 |
咸海水量 | 10~100, 100~200, 200~300 | km3 | |
下游荒漠面积 | 包括Aralkum沙漠 | 14~16, 16~18, 18~20 | 104 km2 |
下游土壤盐分含量 | 克孜勒奥尔达地区 | 0~3, 3~8, 8~30 | g/kg |
下游沙、盐尘暴频率 | 0~30, 30~60, 60~100 | d/a | |
下游饮用水矿化度 | 克孜勒奥尔达地区 | 0~0.5, 0.5~1, 1~3 | g/L |
下游人均预期寿命 | 64~66, 66~68, 68~70, 70~72 | a |
Tab. 5
Responses of target variables to scenario variables in different scenarios
目标变量 | 情景变量 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RF | DR | EI | UR | WR | IQ | DG | DC | DA | UA | DI | WD | |
下游总用水量(低) | -1.2 | +0.2 | +1.2 | +1.7 | -1.6 | -1.8 | +0.3 | |||||
上游总用水量(低) | -4.3 | +2.5 | -0.9 | |||||||||
下游人均产值(高) | +0.6 | +0.5 | +4.7 | |||||||||
上游人均产值(高) | +0.3 | +1.3 | ||||||||||
下游畜牧业产值(高) | +5.1 | |||||||||||
下游粮食产量(高) | +0.3 | -0.3 | +13.6 | |||||||||
上游能源总量(高) | +2.0 | +5.9 | -2.7 | +2.6 | ||||||||
咸海入湖水量(高) | +2.4 | +3.6 | +1.3 | +2.3 | +0.5 | +2.6 | +23.5 | |||||
咸海水量(高) | +1.5 | +0.6 | +3.5 | |||||||||
荒漠面积(低) | +9.6 | |||||||||||
土壤盐分含量(低) | +5.5 | |||||||||||
沙、盐尘暴频率(低) | +0.1 | +3.7 | +0.8 | +1.1 | ||||||||
用水矿化度(低) | +1.3 | |||||||||||
下游人均寿命(高) | +0.2 |
[1] |
Micklin P . Desiccation of the Aral Sea: A water management disaster in the Soviet Union. Science, 1988,241(4870):1170-1176.
doi: 10.1126/science.241.4870.1170 |
[2] |
Endo A, Tsurita I, Burnett K , et al. A review of the current state of research on the water, energy, and food nexus. Journal of Hydrology: Regional Studies, 2017,11:20-30.
doi: 10.1016/j.ejrh.2015.11.010 |
[3] |
Smajgl A, Ward J, Pluschke L . The water-food-energy Nexus-Realising a new paradigm. Journal of Hydrology, 2016,533:533-540.
doi: 10.1016/j.jhydrol.2015.12.033 |
[4] |
Tian H, Lu C, Pan S , et al. Optimizing resource use efficiencies in the food-energy-water nexus for sustainable agriculture: From conceptual model to decision support system. Current Opinion in Environmental Sustainability, 2018,33:104-113.
doi: 10.1016/j.cosust.2018.04.003 |
[5] |
Conway D, Van Garderen E A, Deryng D, , et al. Climate and southern Africa's water-energy-food nexus. Nature Climate Change, 2015,5(9):837-846.
doi: 10.1038/nclimate2735 |
[6] |
Siddiqi A, Anadon L D . The water-energy nexus in Middle East and North Africa. Energy Policy, 2011,39(8):4529-4540.
doi: 10.1016/j.enpol.2011.04.023 |
[7] | Huang G H, Loucks D P . An inexact two-stage stochastic programming model for water resources management under uncertainty. Civil Engineering Systems, 2000,17(2):95-118. |
[8] |
Huang Y, Li Y P, Chen X , et al. Optimization of the irrigation water resources for agricultural sustainability in Tarim River Basin, China. Agricultural Water Management, 2012,107:74-85.
doi: 10.1016/j.agwat.2012.01.012 |
[9] |
Bazilian M, Rogner H, Howells M , et al. Considering the energy, water and food nexus: Towards an integrated modelling approach. Energy Policy, 2011,39(12):7896-7906.
doi: 10.1016/j.enpol.2011.09.039 |
[10] |
Howells M, Hermann S, Welsch M , et al. Integrated analysis of climate change, land-use, energy and water strategies. Nature Climate Change, 2013,3(7):621-626.
doi: 10.1038/nclimate1789 |
[11] |
Daher B T, Mohtar R H . Water-energy-food (WEF) Nexus Tool 2. 0: Guiding integrative resource planning and decision-making. Water International, 2015,40(5/6):748-771.
doi: 10.1080/02508060.2015.1074148 |
[12] |
Ringler C, Bhaduri A, Lawford R . The nexus across water, energy, land and food (WELF): Potential for improved resource use efficiency? Current Opinion in Environmental Sustainability, 2013,5(6):617-624.
doi: 10.1016/j.cosust.2013.11.002 |
[13] | Kahrl F, Roland-Holst D . China's water-energy nexus. Water Policy, 2008,10(Suppl.1):51-65. |
[14] |
Aguilera P A, Fernández A, Ropero R F , et al. Groundwater quality assessment using data clustering based on hybrid Bayesian networks. Stochastic Environmental Research and Risk Assessment, 2013,27(2):435-447.
doi: 10.1007/s00477-012-0676-8 |
[15] |
Hines E E, Landis W G . Regional risk assessment of the Puyallup River Watershed and the evaluation of low impact development in meeting management goals. Integrated Environmental Assessment and Management, 2014,10(2):269-278.
doi: 10.1002/ieam.1509 |
[16] |
Death R G, Death F, Stubbington R , et al. How good are Bayesian belief networks for environmental management? A test with data from an agricultural river catchment. Freshwater Biology, 2015,60(11):2297-2309.
doi: 10.1111/fwb.12655 |
[17] | Nash D, Hannah M . Using Monte-Carlo simulations and Bayesian networks to quantify and demonstrate the impact of fertiliser best management practices. Environmental Modelling & Software, 2011,26(9):1079-1088. |
[18] |
Fienen M N, Masterson J P, Plant N G , et al. Bridging groundwater models and decision support with a Bayesian network. Water Resources Research, 2013,49(10):6459-6473.
doi: 10.1002/wrcr.20496 |
[19] |
Giordano R, D'agostino D, Apolloni C , et al. Bayesian belief network to support conflict analysis for groundwater protection: The case of the Apulia region. Journal of Environmental Management, 2013,115:136-146.
doi: 10.1016/j.jenvman.2012.11.011 |
[20] |
Quinn J M, Monaghan R M, Bidwell V J , et al. A Bayesian Belief Network approach to evaluating complex effects of irrigation-driven agricultural intensification scenarios on future aquatic environmental and economic values in a New Zealand catchment. Marine and Freshwater Research, 2013,64(5):460-474.
doi: 10.1071/MF12141 |
[21] |
Mamitimin Y, Feike T, Doluschitz R . Bayesian network modeling to improve water pricing practices in Northwest China. Water, 2015,7(10):5617-5637.
doi: 10.3390/w7105617 |
[22] |
Hunter P R, De Sylor M A, Risebro H L , et al. Quantitative microbial risk assessment of cryptosporidiosis and giardiasis from very small private water supplies. Risk Analysis: An International Journal, 2011,31(2):228-236.
doi: 10.1111/j.1539-6924.2010.01499.x |
[23] |
Pagano A, Giordano R, Portoghese I , et al. A Bayesian vulnerability assessment tool for drinking water mains under extreme events. Natural Hazards, 2014,74(3):2193-2227.
doi: 10.1007/s11069-014-1302-5 |
[24] | Phan T D, Smart J C R, Capon S J, et al. Applications of Bayesian belief networks in water resource management: A systematic review. Environmental Modelling & Software, 2016,85:98-111. |
[25] |
Micklin P . The Aral sea disaster. Annual Review of Earth and Planetary Sciences, 2007,35:47-72.
doi: 10.1146/annurev.earth.35.031306.140120 |
[26] | Siegfried T, Bernauer T . Estimating the performance of international regulatory regimes: Methodology and empirical application to international water management in the Naryn/Syr Darya basin. Water Resources Research, 2007,43(11):1-14. |
[27] |
Cai X, Mckinney D C, Rosegrant M W . Sustainability analysis for irrigation water management in the Aral Sea region. Agricultural Systems, 2003,76(3):1043-1066.
doi: 10.1016/S0308-521X(02)00028-8 |
[28] | Li Xiangquan, Deng Mingjiang, Long Aihua , et al. Analysis of water resources development in Kyrgyzstan and water problems. Advances in Earth Science, 2010,25(12):1367-1375. |
[ 李湘权, 邓铭江, 龙爱华 , 等. 吉尔吉斯斯坦水资源及其开发利用. 地球科学进展, 2010,25(12):1367-1375.] | |
[29] | Long Aihua, Deng Mingjiang, Li Xiangquan , et al. An analysis of water resources development in Kazakhstan and water problems. Advances in Earth Science, 2010,25(12):1357-1366. |
[ 龙爱华, 邓铭江, 李湘权 , 等. 哈萨克斯坦水资源及其开发利用. 地球科学进展, 2010,25(12):1357-1366.] | |
[30] | Pearl J . Probabilistic Reasoning in Intelligent Systems: Networks of Pausible Reasoning. San Francisco: Morgan Kaufmann Publishers, 1988: 1022-1027. |
[31] | Neal R M, Hinton G E . A View of the EM Algorithm That Justifies Incremental, Sparse, and Other Variants. New York: Springer, 1998: 355-368. |
[32] |
Uusitalo L . Advantages and challenges of Bayesian networks in environmental modelling. Ecological Modelling, 2007,203(3/4):312-318.
doi: 10.1016/j.ecolmodel.2006.11.033 |
[33] | Poppenborg P, Koellner T . A Bayesian network approach to model farmers' crop choice using socio-psychological measurements of expected benefits of ecosystem services. Environmental Modelling & Software, 2014,57:227-234. |
[34] | Kragt M E, Newham L T H, Bennett J, et al An integrated approach to linking economic valuation and catchment modelling. Environmental Modelling & Software, 2011,26(1):92-102. |
[35] | Cain K, Oakhill J V, Barnes M A , et al. Comprehension skill, inference-making ability, and their relation to knowledge. Memory & Cognition, 2001,29(6):850-859. |
[36] |
Marcot B G, Steventon J D, Sutherland G D , et al. Guidelines for developing and updating Bayesian belief networks applied to ecological modeling and conservation. Canadian Journal of Forest Research, 2006,36(12):3063-3074.
doi: 10.1139/x06-135 |
[37] |
Marcot B G . Metrics for evaluating performance and uncertainty of Bayesian network models. Ecological Modelling, 2012,230:50-62.
doi: 10.1016/j.ecolmodel.2012.01.013 |
[38] | Pollino C A, Woodberry O, Nicholson A , et al. Parameterisation and evaluation of a Bayesian network for use in an ecological risk assessment. Environmental Modelling & Software, 2007,22(8):1140-1152. |
[39] |
Barton D N, Saloranta T, Moe S J , et al. Bayesian belief networks as a meta-modelling tool in integrated river basin management: Pros and cons in evaluating nutrient abatement decisions under uncertainty in a Norwegian river basin. Ecological Economics, 2008,66(1):91-104.
doi: 10.1016/j.ecolecon.2008.02.012 |
[40] |
Pearl J . Embracing causality in default reasoning. Artificial Intelligence, 1988,35(2):259-271.
doi: 10.1016/0004-3702(88)90015-X |
[41] |
Zeng Li, Li Jing, Li Ting , et al. Optimizing spatial patterns of water conservation ecosystem service based on Bayesian belief networks. Acta Geographica Sinica, 2018,73(9):1809-1822.
doi: 10.11821/dlxb201809015 |
[ 曾莉, 李晶, 李婷 , 等. 基于贝叶斯网络的水源涵养服务空间格局优化. 地理学报, 2018,73(9):1809-1822.]
doi: 10.11821/dlxb201809015 |
|
[42] | Deng Mingjiang, Long Aihua . Water resources issue among the central Asian countries around the Aral Sea: Conflict and cooperation. Journal of Glaciology and Geocryology, 2011,33(6):1377-1390. |
[ 邓铭江, 龙爱华 . 中亚各国在咸海流域水资源问题上的冲突与合作. 冰川冻土, 2011,33(6):1377-1390.] | |
[43] |
Shen Y, Li S, Chen Y , et al. Estimation of regional irrigation water requirement and water supply risk in the arid region of northwestern China 1989-2010. Agricultural Water Management, 2013,128:55-64.
doi: 10.1016/j.agwat.2013.06.014 |
[1] | DU Yun-Yan-1, Wang-Li-Jing-2, Ji-Min-2, Cao-Feng-1. A CBR Approach for Land Use Change Prediction [J]. Acta Geographica Sinica, 2009, 64(12): 1421-1429. |