Acta Geographica Sinica ›› 2020, Vol. 75 ›› Issue (3): 558-570.doi: 10.11821/dlxb202003009
• Surface Process • Previous Articles Next Articles
ZHANG Junhua1,2, LI Guodong1,2(), WANG Yansong1,2, ZHU Lianqi1,2, ZHAO Wenliang1,2, DING Yapeng1,2
Received:
2019-05-17
Revised:
2020-01-14
Online:
2020-03-25
Published:
2020-05-25
Contact:
LI Guodong
E-mail:defsky@163.com
Supported by:
ZHANG Junhua, LI Guodong, WANG Yansong, ZHU Lianqi, ZHAO Wenliang, DING Yapeng. Spatial characteristics and variation mechanism of different soil organic carbon components in the alluvial/sedimentary zone of the Yellow River[J].Acta Geographica Sinica, 2020, 75(3): 558-570.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Statistical characteristics of soil organic carbon, 0-100 cm belowground(g/kg)
指标 | 深度(cm) | 极差 | 最小值 | 最大值 | 平均值 | 方差 | 偏度 | 峰度 |
---|---|---|---|---|---|---|---|---|
TOC | 0~20 | 28.78 | 1.25 | 30.03 | 8.96±4.31 | 18.62 | 0.99 | 2.44 |
20~40 | 16.72 | 0.59 | 17.32 | 5.08±2.87 | 8.24 | 1.12 | 1.81 | |
40~60 | 13.60 | 0.40 | 14.00 | 3.88±2.50 | 6.25 | 1.01 | 1.19 | |
60~80 | 15.73 | 0.08 | 15.81 | 3.08±2.24 | 5.02 | 1.56 | 4.64 | |
80~100 | 13.78 | 0.05 | 13.83 | 2.57±2.12 | 4.50 | 1.66 | 4.34 | |
AOC | 0~20 | 8.75 | 0.11 | 8.86 | 1.77±1.07 | 1.15 | 1.70 | 8.52 |
20~40 | 3.47 | 0.01 | 3.48 | 0.80±0.62 | 0.38 | 1.19 | 1.84 | |
40~60 | 1.98 | 0.01 | 2.00 | 0.51±0.43 | 0.19 | 0.97 | 0.31 | |
60~80 | 1.49 | 0.01 | 1.50 | 0.37±0.34 | 0.12 | 1.00 | 0.15 | |
80~100 | 1.42 | 0.01 | 1.42 | 0.29±0.29 | 0.08 | 1.39 | 1.74 | |
NOC | 0~20 | 22.75 | 0.61 | 23.36 | 7.19±3.48 | 12.13 | 0.95 | 1.98 |
20~40 | 15.27 | 0.58 | 15.85 | 4.28±2.49 | 6.25 | 1.30 | 2.52 | |
40~60 | 12.89 | 0.01 | 12.90 | 3.34±2.22 | 4.95 | 1.14 | 1.87 | |
60~80 | 15.20 | 0.06 | 15.26 | 2.76±2.02 | 4.07 | 1.86 | 6.96 | |
80~100 | 13.23 | 0.02 | 13.25 | 2.25±1.94 | 3.75 | 1.87 | 5.82 |
Tab. 2
Fitting model and parameters of SOC semi-variance function, 0-100 cm belowground
深度 (cm) | 指标 | 模型 | 块金值 (C0) | 基台值 (C0+C) | 变程 (A0) | 块金系数 (C/C0+C) | 决定系数 (R2) | 残差 (RSS) | 分形维数 (D) | |
---|---|---|---|---|---|---|---|---|---|---|
0~20 | TOC | E | 10.91 | 27.56 | 6.52 | 0.60 | 0.91 | 8.37 | 1.92 | |
AOC | E | 0.72 | 1.41 | 1.55 | 0.50 | 0.83 | 0.08 | 1.91 | ||
NOC | E | 6.95 | 14.79 | 4.04 | 0.53 | 0.90 | 3.92 | 1.92 | ||
20~40 | TOC | E | 4.56 | 13.28 | 9.03 | 0.66 | 0.93 | 1.11 | 1.92 | |
AOC | E | 0.71 | 1.43 | 1.55 | 0.50 | 0.83 | 0.08 | 1.96 | ||
NOC | E | 3.36 | 9.79 | 7.73 | 0.67 | 0.93 | 0.70 | 1.91 | ||
40~60 | TOC | E | 2.92 | 6.31 | 3.21 | 0.54 | 0.95 | 0.46 | 1.91 | |
AOC | E | 0.11 | 0.22 | 0.78 | 0.50 | 0.86 | 0.00 | 1.93 | ||
NOC | E | 2.27 | 4.68 | 2.51 | 0.52 | 0.92 | 0.44 | 1.91 | ||
60~80 | TOC | E | 2.18 | 5.06 | 3.35 | 0.57 | 0.94 | 0.38 | 1.90 | |
AOC | E | 0.10 | 0.20 | 0.66 | 0.50 | 0.85 | 0.00 | 1.94 | ||
NOC | G | 1.81 | 3.62 | 1.23 | 0.50 | 0.93 | 0.35 | 1.89 | ||
80~100 | TOC | G | 1.86 | 3.72 | 0.97 | 0.50 | 0.93 | 0.49 | 1.89 | |
AOC | E | 0.08 | 0.22 | 0.39 | 0.63 | 0.68 | 0.00 | 1.94 | ||
NOC | G | 1.53 | 3.07 | 0.89 | 0.50 | 0.90 | 0.46 | 1.88 |
Tab. 3
Simulation error of SOC spatial distribution, 0-100 cm belowground
深度 (cm) | 指标 | 平均误差 (ME) | 均方根误差 (RMSE) | 平均标准误差 (ASE) | 均方误差 (MSE) | 均方根标准误差 (RMSSE) |
---|---|---|---|---|---|---|
0~20 | TOC | 0.02 | 3.50 | 3.50 | 0.01 | 0.99 |
AOC | 0.01 | 0.99 | 0.87 | 0.01 | 1.13 | |
NOC | 0.00 | 2.83 | 2.81 | 0.00 | 1.01 | |
20~40 | TOC | 0.01 | 2.28 | 2.27 | 0.01 | 1.01 |
AOC | 0.01 | 0.56 | 0.58 | 0.02 | 0.95 | |
NOC | 0.00 | 1.99 | 1.95 | 0.01 | 1.02 | |
40~60 | TOC | 0.04 | 1.89 | 1.81 | 0.00 | 1.04 |
AOC | 0.00 | 0.38 | 0.33 | 0.01 | 1.15 | |
NOC | 0.00 | 1.69 | 1.59 | 0.00 | 1.06 | |
60~80 | TOC | 0.00 | 1.70 | 1.62 | 0.00 | 1.07 |
AOC | 0.00 | 0.33 | 0.27 | 0.00 | 1.20 | |
NOC | 0.01 | 1.57 | 1.38 | -0.01 | 1.14 | |
80~100 | TOC | -0.02 | 1.50 | 1.40 | -0.01 | 1.09 |
AOC | 0.02 | 0.41 | 0.39 | 0.01 | 1.11 | |
NOC | -0.01 | 1.40 | 1.27 | -0.01 | 1.11 |
[1] | Belay-Tedla A, Zhou X, Su B , et al. Labile, recalcitrant, and microbial carbon and nitrogen pools of a tallgrass prairie soil in the US Great Plains subjected to experimental warming and clipping. Soil Biology & Biochemistry, 2009,41(1):110-116. |
[2] | Zhu L Q, Hu N J, Zhang Z W , et al. Short-term responses of soil organic carbon and carbon pool management index to different annual straw return rates in a rice-wheat cropping system. Catena, 2015,135:283-289. |
[3] | Yao J T, Kong X B . Modeling the effects of land-use optimization on the soil organic carbon sequestration potential. Journal of Geographical Sciences, 2018,28(11):1641-1658. |
[4] | Greiner L, Keller A, Grêt-Regamey A , et al. Soil function assessment: Review of methods for quantifying the contributions of soils to ecosystem services. Land Use Policy, 2017,69:224-237. |
[5] | Drobnik T, Greiner L, Keller A , et al. Soil quality indicators-From soil functions to ecosystem services. Ecological Indicators, 2018,94:151-169. |
[6] | Wang Jingya, Zhang Fenghua . Distribution of soil aggregates and aggregate-associated organic carbon from typical halophyte community in arid region. Acta Ecologica Sinica, 2016,36(3):600-607. |
[ 王静娅, 张凤华 . 干旱区典型盐生植物群落土壤团聚体组成及有机碳分布. 生态学报, 2016,36(3):600-607.] | |
[7] | Liu Xinghua, Zhang Haibo, Li Yuan , et al. Variation of organic matter in soil aggregates with the succession of tidal flatland from barren land-saltmarsh-upland in the Yellow River Delta. Acta Pedologica Sinica, 2019,56(2):374-385. |
[ 刘兴华, 章海波, 李远 , 等. 黄河三角洲滩涂—湿地—旱地土壤团聚体有机质组分变化规律. 土壤学报, 2019,56(2):374-385.] | |
[8] | Chai Y J, Zeng X B, Sheng Z E , et al. The stability mechanism for organic carbon of aggregate fractions in the irrigated desert soil based on the long-term fertilizer experiment of China. Catena, 2019,173:312-320. |
[9] | Zhu Renhuan, Zheng Zicheng, Li Tingxuan , et al. Effects of converting farmland to tea plantations on soil labile organic carbon fractions in the hilly region of western Sichuan, China. Acta Scientiae Circumstantiae, 2018,38(2):744-751. |
[ 朱仁欢, 郑子成, 李廷轩 , 等. 退耕植茶对川西低山丘陵区土壤活性有机碳组分的影响. 环境科学学报, 2018,38(2):744-751.] | |
[10] | Laik R, Kumar K, Das D K , et al. Labile soil organic matter pools in a calciorthent after 18 years of afforestation by different plantations. Applied Soil Ecology, 2009,42(2):71-78. |
[11] | Pu Yulin, Ye Chun, Zhang Shirong , et al. Effects of different ecological restoration patterns on labile organic carbon and carbon pool management index of desertification grassland soil in zoige. Acta Ecologica Sinica, 2017,37(2):367-377. |
[ 蒲玉琳, 叶春, 张世熔 , 等. 若尔盖沙化草地不同生态恢复模式土壤活性有机碳及碳库管理指数变化. 生态学报, 2017,37(2):367-377.] | |
[12] | Xu L, Wang C, Zhu J , et al. Latitudinal patterns and influencing factors of soil humic carbon fractions from tropical to temperate forests. Journal of Geographical Sciences, 2018,28(1):15-30. |
[13] | Xu Jisheng, Zhao Bingzi, Zhang Jiabao , et al. Effects of long-term application of organic manure and chemical fertilizer on structure of humic acid in fluvo-aquic soil. Acta Pedologica Sinica, 2017,54(3):647-656. |
[ 徐基胜, 赵炳梓, 张佳宝 , 等. 长期施有机肥和化肥对潮土胡敏酸结构特征的影响. 土壤学报, 2017,54(3):647-656.] | |
[14] | Chatterjee S, Bandyopadhyay K K, Pradhan S , et al. Effects of irrigation, crop residue mulch and nitrogen management in maize (Zea mays L.) on soil carbon pools in a sandy loam soil of Indo-gangetic plain region. Catena, 2018,165:207-216. |
[15] | Cillis D, Maestrini B, Pezzuolo A , et al. Modeling soil organic carbon and carbon dioxide emissions in different tillage systems supported by precision agriculture technologies under current climatic conditions. Soil & Tillage Research, 2018,183:51-59. |
[16] | Wu Min, Liu Shujuan, Ye Yingying , et al. Spatial variability of surface soil organic carbon and its influencing factors in cultivated slopes and abandoned lands in a Karst peak-cluster depression area. Acta Ecologica Sinica, 2016,36(6):1619-1627. |
[ 吴敏, 刘淑娟, 叶莹莹 , 等. 喀斯特地区坡耕地与退耕地土壤有机碳空间异质性及其影响因素. 生态学报, 2016,36(6):1619-1627.] | |
[17] | Du Peiying, Zhang Haitao, Guo Long , et al. Variation of soil organic matter in transition zones and its influencing factors. Acta Pedologica Sinica, 2018,55(5):1286-1295. |
[ 杜佩颖, 张海涛, 郭龙 , 等. 平原丘陵过渡区土壤有机质空间变异及其影响因素. 土壤学报, 2018,55(5):1286-1295.] | |
[18] | Jia Haifeng, Luo Huaixiu, Hu Jinming , et al. Spatial variability of topsoil organic carbon and labile components in Napahai Wetland, northwest of Yunnan, China. Mountain Research, 2014,32(5):624-632. |
[ 贾海锋, 罗怀秀, 胡金明 , 等. 纳帕海湿地区表土有机碳及其活性组分的空间分异. 山地学报, 2014,32(5):624-632.] | |
[19] | Kumar S, Lal R, Liu D , et al. Estimating the spatial distribution of organic carbon density for the soils of Ohio, USA. Journal of Geographical Sciences, 2013,23(2):280-296. |
[20] | Li Y, Wang X, Niu Y , et al. Spatial distribution of soil organic carbon in the ecologically fragile Horqin Grassland of northeastern China. Geoderma, 2018,325:102-109. |
[21] | Gao Wei, Yang Jun, Ren Shunrong . Balance characteristics of soil organic carbon under different long-term fertilization models in the upland fluvo-aquic soil of North China. Journal of Plant Nutrition and Fertilizer, 2015,21(6):1465-1472. |
[ 高伟, 杨军, 任顺荣 . 长期不同施肥模式下华北旱作潮土有机碳的平衡特征. 植物营养与肥料学报, 2015,21(6):1465-1472.] | |
[22] | Li Peipei, Wang Qiang, Wen Qian , et al. Effects of the return of organic materials on soil physical and chemical properties and bacterial number in sandy soil. Acta Ecologica Sinica, 2017,37(11):3665-3672. |
[ 李培培, 汪强, 文倩 , 等. 不同还田方式对砂质潮土理化性质及微生物的影响. 生态学报, 2017,37(11):3665-3672.] | |
[23] | Li Yongwen, Xu Xiaoxia, Liu Yuzhen . Henan Geography. Beijing: Beijing Normal University Press, 2010. |
[ 李永文, 徐晓霞, 刘玉振 . 河南地理. 北京:北京师范大学出版社, 2010.] | |
[24] | Meng Zhaojiang, Liu Anneng, Wu Haiqing , et al. Mathematical model of water-fertilizer interaction for water-saving and high-yield winter wheat in east area of Henan Province. Transaction of the CSAE, 1998,1:86-90. |
[ 孟兆江, 刘安能, 吴海卿 , 等. 黄海豫东平原冬小麦节水高产水肥耦合数学模型研究. 农业工程学报, 1998,1:86-90.] | |
[25] | Huo Yazhen, Li Tianjie . Experiment and Practice of Soil Geography. Beijing: Higher Education Press, 1986. |
[ 霍亚贞, 李天杰 . 土壤地理实验实习. 北京: 高等教育出版社, 1986.] | |
[26] | Loginow W, Wisniewski W, Gonet S S , et al. Fractionation of organic carbon based on susceptibility to oxidation. Polish Journal of Soil Science, 1987,20(1):47-52. |
[27] | Lefroy R D B, Blair G J, Strong W M . Changes in soil organic matter with cropping as measured by organic carbon fractions and 13C natural isotope abundance. Plant and Soil, 1993,155/156(1):399-402. |
[28] | Zhang Junhua, Li Guodong, Nan Zhongren , et al. Research on soil particle size distribution and its relationship with soil organic carbon under the effects of tillage in the Heihe oasis. Geographical Research, 2012,31(4):608-618. |
[ 张俊华, 李国栋, 南忠仁 , 等. 黑河绿洲区耕作影响下的土壤粒径分布及其与有机碳的关系. 地理研究, 2012,31(4):608-618.] | |
[29] | Huang Xiaokui, Wang Anqiu . Soil geography of the yellow plain region. Acta Geographica Sinica, 1954,20(3):313-331. |
[ 黄孝夔, 汪安球 . 黄泛区土壤地理. 地理学报, 1954,20(3):313-331.] | |
[30] | Li Zhitian, Ma Zhensheng, Chen Guoming . Soil Resources in Zhoukou Region. Beijing: China Science and Technology Press, 1991. |
[ 李志田, 马振生, 陈国明 . 周口地区土壤资源. 北京: 中国科学技术出版社. 1991.] | |
[31] | An Chunhua . Research on landscape pattern changes of the old course of Yellow River in Ming-Qing dynasties and the area beside the lower reaches of the Yellow River based on 3S[D]. Kaifeng: Henan University, 2007. |
[ 安春华 . 基于3S的明清黄河故道与黄河下游沿岸景观格局变化研究[D]. 开封: 河南大学, 2007.] | |
[32] | Sun Caili, Xue Sha, Liu Guobin , et al. Effects of long-term fertilization on soil particles and microaggregate distribution in the loess area. Journal of Plant Nutrition and Fertilizer, 2014,20(3):550-561. |
[ 孙彩丽, 薛萐, 刘国彬 , 等. 黄土区不同施肥对土壤颗粒及微团聚体组成的影响. 植物营养与肥料学报, 2014,20(3):550-561.] | |
[33] | Xue Weijiang, Che Defu, Cai Hong , et al. Grain-size compostition of surface layer loess of Xi'an city and its shape character. Journal of Northwest University (Natural Science Edition), 2004,34(2):223-227. |
[ 许卫疆, 车得福, 蔡宏 , 等. 西安城郊表层黄土的粒度组成及其形态特征. 西北大学学报(自然科学版), 2004,34(2):223-227.] | |
[34] | Yang Ting, Jing Hang, Yao Xu , et al. Soil particle composition and its fractal dimension characteristics of different land uses in Loess hilly region. Research of Soil and Water Conservation, 2016,23(3):1-24. |
[ 杨婷, 景航, 姚旭 , 等. 黄土丘陵不同土地利用方式下土壤颗粒组成及其分形维数特征. 水土保持研究, 2016,23(3):1-24.] | |
[35] | Su Yongzhong, Zhang Ke, Liu Tingna , et al. Changes in soil properties and accumulation of soil carbon after cultivation of desert sandy land in a marginal oasis in Hexi Corridor region, Northwest China. Scientia Agricultura Sinica, 2017,50(9):1646-1654. |
[ 苏永中, 张珂, 刘婷娜 , 等. 河西边缘绿洲荒漠沙地开垦后土壤性状演变及土壤碳积累研究. 中国农业科学, 2017,50(9):1646-1654.] | |
[36] | Su Y Z, Yang R, Liu W J , et al. Evolution of soil structure and fertility after conversion of native sandy desert soil to irrigated cropland in arid region, China. Soil Science, 2010,175(5):246-254. |
[37] | Aye N S, Sale P W G, Tang C X . The impact of long-term liming on soil organic carbon and aggregate stability in low-input acid soils. Biology and Fertility of Soils, 2016,52(5):697-709. |
[38] | Vanlauwe B, Nwoke O C, Sanginga N , et al. Evaluation of methods for measuring microbial biomass C and N and relationships between microbial biomass and soil organic matter particle size classes in West-African soils. Soil Biology & Biochemistry, 1999,31(8):1071-1082. |
[39] | Tan Guangmu, Xu Wanli, Sheng Jiandong , et al. The variation of soil organic carbon and soil particle-size in Xinjiang oasis farmland of different years. Acta Pedologica Sinica, 2010,47(2):279-285. |
[ 唐光木, 徐万里, 盛建东 , 等. 新疆绿洲农田不同开垦年限土壤有机碳及不同粒径土壤颗粒有机碳变化. 土壤学报, 2010,47(2):279-285.] | |
[40] | McConkey B G, Liang B C, Campbell C A , et al. Crop rotation and tillage impact on carbon sequestration in Canadian prairie soils. Soil & Tillage Research, 2003,74(1):81-90. |
[1] | QIN Jing,LI Langping,TANG Mingdi,SUN Yan,SONG Xinrui. Exploring the spatial characteristics of Beijing inbound tourist flow based on geotagged photos [J]. Acta Geographica Sinica, 2018, 73(8): 1556-1570. |
[2] | YANG Xingzhu,SUN Jingdong,LU Lin,WANG Qun. Spatial characteristics and social effects of residential spaces in the tourist destination Qiandaohu [J]. Acta Geographica Sinica, 2018, 73(2): 276-294. |
[3] | XU Li, YU Guirui, HE Nianpeng. Changes of soil organic carbon storage in Chinese terrestrial ecosystems from the 1980s to the 2010s [J]. Acta Geographica Sinica, 2018, 73(11): 2150-2167. |
[4] | Zhanshan WANG, Yunting LI, Tian CHEN, Dawei ZHANG, Feng SUN, Libo PAN. Spatial-temporal characteristics of PM2.5 in Beijing in 2013 [J]. Acta Geographica Sinica, 2015, 70(1): 110-120. |
[5] | DENG Yu, CAI Jianming, YANG Zhenshan, WANG Hao. Measuring Time Accessibility with Its Spatial Characteristics in Urban Areas of Beijing [J]. Acta Geographica Sinica, 2012, 67(2): 169-178. |
[6] | HE Jinyun, ZHANG Mingjun, WANG Peng, WANG Shengjie, WANG Xingmei. Climate Characteristics of the Extreme Drought Events in Southwest China during Recent 50 Years [J]. Acta Geographica Sinica, 2011, 66(9): 1179-1190. |
[7] | YANG Yuhai; CHEN Yaning; LI Weihong; CHEN Yapeng. Soil Organic Carbon Distribution of Different Vegetation Types in the Ili River Valley [J]. Acta Geographica Sinica, 2010, 65(5): 605-612. |
[8] | YANG Yusheng, XIE Jinsheng, SHENG Hao, CHEN Guangshui, LI Xu. The Impact of Land Use/Cover Change on Soil Organic Carbon Stocks and Quality in Mid- subtropical Mountainous Ar ea of Southern China [J]. Acta Geographica Sinica, 2007, 62(11): 1123-1131. |
[9] | CHEN Qingqiang, ZHOU Juzhen, MENG Yi, GU Jinghua, HU Kelin. Trends of Soil Organic Matter Turnover in the Salt Marsh of the Yangtze River Estuary [J]. Acta Geographica Sinica, 2007, 62(1): 72-80. |
[10] | TAO Zhen, SHEN Chengde, GAO Quanzhou, SUN Yanmin, YI Weixi, LI Yingnian. Soil Organic Carbon Storage and Vertical Distribution of Alpine Meadow on the Tibetan Plateau [J]. Acta Geographica Sinica, 2006, 61(7): 720-728. |
[11] | ZENG Yongnian, FENG Zhaodong, CAO Guangchao, XUE Liang. The Soil Organic Carbon Storage and Its Spatial Distribution of Alpine Grassland in the Source Region of the Yellow River [J]. Acta Geographica Sinica, 2004, 59(4): 497-504. |
[12] | LIU Jiyuan, WANG Shaoqiang, CHEN Jingming, LIU Mingliang, ZHUANG Dafang. Storages of Soil Organic Carbon and Nitrogen and Land Use Changes in China: 1990-2000 [J]. Acta Geographica Sinica, 2004, 59(4): 483-496. |
[13] | CHENG Shulan, OUYANG Hua, NIU Haishan. Temporal-spatial Dynamic Analysis of Soil Organic Carbon in Inversed Desertification Area: a case study in Yulin County, Shaanxi Province [J]. Acta Geographica Sinica, 2004, 59(4): 505-513. |
[14] | TIAN Guangjin, LIU Jiyuan, ZHUANG Dafang. The Temporal-spatial Characteristics of Rural Residential Land in China in the 1990s [J]. Acta Geographica Sinica, 2003, 58(5): 651-658. |
[15] | ZHOU Tao, SHI Peijun, WANG Shaoqiang. Impacts of Climate Change and Human Activities on Soil Carbon Storage in China [J]. Acta Geographica Sinica, 2003, 58(5): 727-734. |