Acta Geographica Sinica ›› 2020, Vol. 75 ›› Issue (1): 53-67.doi: 10.11821/dlxb202001005
• Climate Change • Previous Articles Next Articles
ZHOU Yuke
Received:
2019-01-05
Revised:
2019-12-20
Online:
2020-01-25
Published:
2020-03-25
Supported by:
ZHOU Yuke. Analysis of controlling factors for vegetation productivity in Northeast China[J].Acta Geographica Sinica, 2020, 75(1): 53-67.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Lucht W, Prentice I C, Myneni R B , et al. Climatic control of the high-latitude vegetation greening trend and Pinatubo effect. Science, 2002,296(5573):1687-1689. |
[2] | Guo Jian, Chen Shi, Xu Bin , et al. Remote sensing monitoring of grassland vegetation greenup based on SPOT-VGT in XiLingol League. Geographical Research, 2017,36(1):37-48. |
[ 郭剑, 陈实, 徐斌 , 等. 基于SPOT-VGT数据的锡林郭勒盟草原返青期遥感监测. 地理研究, 2017,36(1):37-48.] | |
[3] | Li Zhengguo, Tang Huajun, Yang Peng , et al. Progress in remote sensing of vegetation phenology and its application in agriculture. Chinese Journal of Agricultural Resources and Regional Planning, 2012,33(5):20-28. |
[ 李正国, 唐华俊, 杨鹏 , 等. 植被物候特征的遥感提取与农业应用综述. 中国农业资源与区划, 2012,33(5):20-28.] | |
[4] | Song Chunqiao, Ke Linghong, You Songcai , et al. Comparison of three NDVI time-series fitting methods based on TIMESA: Taking the grassland in northern Tibet as case. Remote Sensing Technology and Application, 2011,26(2):147-155. |
[ 宋春桥, 柯灵红, 游松财 , 等. 基于TIMESAT的3种时序NDVI拟合方法比较研究: 以藏北草地为例. 遥感技术与应用, 2011,26(2):147-155.] | |
[5] | Xu Yunjia, Dai Junhu, Wang Huanjiong , et al. Variations of main phenophases of natural calendar and analysis of responses to climate change in Harbin in 1985-2012. Geographical Research, 2015,34(9):1662-1674. |
[ 徐韵佳, 戴君虎, 王焕炯 , 等. 1985—2012年哈尔滨自然历主要物候期变动特征及对气温变化的响应. 地理研究, 2015,34(9):1662-1674.] | |
[6] | Keenan T F, Gray J, Friedl M A , et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nature Climate Change, 2014,4(7):598-604. |
[7] | Zhou Yuke . Comparative study of vegetation phenology extraction methods based on digital images. Progress in Geography, 2018,37(8):1031-1044. |
[ 周玉科 . 基于数码照片的植被物候提取多方法比较研究. 地理科学进展, 2018,37(8):1031-1044.] | |
[8] | Myneni R B, Keeling C D, Tucker C J , et al. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature, 1997,386(6626):698-702. |
[9] | Richardson A D, Keenan T F, Migliavacca M , et al. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agricultural and Forest Meteorology, 2013,169(3):156-173. |
[10] | Goetz S J, Epstein H E, Bhatt U S , et al. Recent changes in Arctic vegetation: Satellite observations and simulation model predictions//Gutman G, Reissell A. Eurasian Arctic Land Cover and Land Use in a Changing Climate. Amsterdam, Netherlands: Springer, 2011: 9-36. |
[11] | Zhang K, Kimball J S, Mu Q Z , et al. Satellite based analysis of northern ET trends and associated changes in the regional water balance from 1983 to 2005. Journal of Hydrology, 2009,379(1):92-110. |
[12] | Buermann W, Bikash P R, Jung M , et al. Earlier springs decrease peak summer productivity in North American boreal forests. Environmental Research Letters, 2013,8(2):24-27. |
[13] | Reed B C, Brown J F, Vanderzee D , et al. Measuring phenological variability from satellite imagery. Journal of Vegetation Science, 1994,5(5):703-714. |
[14] | Hudson I L, Keatley M R . Phenological Research: Methods for Environmental and Climate Change Analysis. Amsterdam, Netherland: Springer, 2010. |
[15] | Fan Deqin, Zhao Xuesheng, Zhu Wenquan , et al. Phenology of Leymus chinensis steppe in Inner Mongolia and its response to climate changes. Progress in Geography, 2016,35(3):304-319. |
[ 范德芹, 赵学胜, 朱文泉 , 等. 植物物候遥感监测精度影响因素研究综述. 地理科学进展, 2016,35(3):304-319.] | |
[16] | Dragoni D, Rahman A F . Trends in fall phenology across the deciduous forests of the eastern USA. Agricultural and Forest Meteorology, 2012,157:96-105. |
[17] | Hmimina G, Dufrêne E, Pontailler J Y , et al. Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: An investigation using ground-based NDVI measurements. Remote Sensing of Environment, 2013,132:145-158. |
[18] | Fisher J I, Richardson A D, Mustard J F . Phenology model from surface meteorology does not capture satellite-based greenup estimations. Global Change Biology, 2006,13(3):707-721. |
[19] | Zhang X, Friedl M A, Schaaf C B , et al. Monitoring vegetation phenology using MODIS. Remote Sensing of Environment, 2003,84(3):471-475. |
[20] | Wang Zhi . Study on vegetation dynamic based on vegetation phenology and NOAA/AVHRR NDVI in the North-South Transect of Eastern China[D]. Beijing: Chinese Academy of Forestry, 2008. |
[ 王植 . 基于物候表征的中国东部南北样带上植被动态变化研究[D]. 北京: 中国林业科学研究院, 2008.] | |
[21] | Pei Shunxiang . Phenological response of typical plants at high latitudes, widely distributed species Prunus persica and species Prunus davidina to climate change in China[D]. Beijing: Chinese Academy of Forestry, 2011. |
[ 裴顺祥 . 我国高纬度地区典型植物及全国广布种毛桃、山桃物候对气候变化的响应[D]. 北京: 中国林业科学研究院, 2011.] | |
[22] | Yu Xinfang, Zhuang Dafang . Monitoring forest phenophases of Northeast China based on MODIS NDVI data. Resources Science, 2006,28(4):111-117. |
[ 于信芳, 庄大方 . 基于MODIS NDVI数据的东北森林物候期监测. 资源科学, 2006,28(4):111-117.] | |
[23] | Hou Xuehui, Niu Zheng, Gao Shuai , et al. Monitoring vegetation phenology in farming-pastoral zone using SPOT-VGT NDVI data. Transactions of the Chinese Society of Agricultural Engineering, 2013,29(1):142-150. |
[ 侯学会, 牛铮, 高帅 , 等. 基于SPOT-VGT NDVI时间序列的农牧交错带植被物候监测. 农业工程学报, 2013,29(1):142-150.] | |
[24] | Qiu Yue, Fan Deqin, Zhao Xuesheng , et al. Spatio-temporal changes of NPP and its responses to phenology in Northeast China. Geography and Geo-Information Science, 2017,33(5):21-27. |
[ 邱玥, 范德芹, 赵学胜 , 等. 中国东北地区植被NPP时空变化及其对物候的响应研究. 地理与地理信息科学, 2017,33(5):21-27.] | |
[25] | Wang Hong, Li Xiaobing, Li Xia , et al. The variability of vegetation growing season in the northern China based on NOAA NDVI and MSAVI from 1982 to 1999. Acta Ecologica Sinica, 2007,27(2):504-515. |
[ 王宏, 李晓兵, 李霞 , 等. 基于NOAA NDVI和MSAVI研究中国北方植被生长季变化. 生态学报, 2007,27(2):504-515.] | |
[26] | Editorial Committee for Vegetation Map of China. Vegetation Map of the People's Republic of China (1:1000000). Beijing: Geological Publishing House, 2007. |
[ 中国科学院中国植被图编辑委员会. 中华人民共和国植被图(1:1000000). 北京: 地质出版社, 2007.] | |
[27] | Tucker C J, Pinzon J E, Brown M E , et al. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. International Journal Remote Sensing, 2005,26(20):4485-4498. |
[28] | Beck H E, McVicar T R, van Dijk A I J M , et al. Global evaluation of four AVHRR-NDVI data sets: Intercomparison and assessment against Landsat imagery. Remote Sensing of Environment, 2011,115(10):2547-2563. |
[29] | Zhang Wen, Bao Gang, Bao Yuhai . Vegetation SOS dynamic monitoring in Inner Mongolia from 1982 to 2013 and its responses to climatic changes. China Agricultural Informatics, 2018,30(2):63-75. |
[ 张雯, 包刚, 包玉海 . 1982—2013年内蒙古植被返青期动态监测及其对气候变化的响应. 中国农业信息, 2018,30(2):63-75.] | |
[30] | Wang J, Dong J, Yi Y , et al. Decreasing net primary production due to drought and slight decreases in solar radiation in China from 2000 to 2012. Journal of Geophysical Research: Biogeosciences, 2017,122(1):261-278. |
[31] | Beck P S A, Atzberger C, Høgda K A , et al. Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI. Remote Sensing of Environment, 2006,100(3):321-334. |
[32] | Zhou Yuke, Liu Jianwen . Spatio-temporal analysis of vegetation phenology with multiple methods over the Tibetan Plateau based on MODIS NDVI data. Remote Sensing Technology and Application, 2018,33(3):486-498. |
[ 周玉科, 刘建文 . 基于MODIS NDVI和多方法的青藏高原植被物候时空特征分析. 遥感技术与应用, 2018,33(3):486-498.] | |
[33] | Piao S L, Yin G D, Tan J G , et al. Detection and attribution of vegetation greening trend in China over the last 30 years. Global Change Biology, 2015,21(4):1601-1609. |
[34] | Fu Z, Dong J W, Zhou Y K , et al. Long term trend and interannual variability of land carbon uptake: The attribution and processes. Environment Research Letters, 2017,12(1):014018. |
[35] | Meng Shan . Estimation and interaction of marine and terrestrial ecosystem services value in coastal provinces and cities of China. Journal of Green Science and Technology, 2018,16:299-302. |
[ 孟珊 . 沿海省市海洋/陆地生态服务价值估算及相互作用关系. 绿色科技, 2018,16:299-302.] | |
[36] | Groemping U . Relative importance for linear regression in R: The Package relaimpo. Journal of Statistical Software, 2006,17(1):1-27. |
[37] | Huang K, Xia J Y, Wang Y P , et al. Enhanced peak growth of global vegetation and its key mechanisms. Nature Ecology & Evolution, 2018,2(12):1897-1905. |
[38] | Zhu W Q, Tian H Q, Xu X F , et al. Extension of the growing season due to delayed autumn over mid and high latitudes in North America during 1982-2006. Global Ecology and Biogeography, 2012,21(2):260-271. |
[39] | Wu C Y, Wang X J, Wang H J , et al. Contrasting responses of autumn-leaf senescence to daytime and night-time warming. Nature Climate Change, 2018,8(12):1092-1096. |
[40] | Buermann W, Forkel M, O’Sullivan M , et al. Widespread seasonal compensation effects of spring warming on northern plant productivity. Nature, 2018,562(7725):110-114. |
[41] | Forkel M, Carvalhais N, Rödenbeck C , et al. Enhanced seasonal CO2 exchange caused by amplified plant productivity in northern ecosystems. Science, 2016,351(6274):696-699. |
[42] | Gonsamo A, Chen J M, Ooi Y W . Peak season plant activity shift towards spring is reflected by increasing carbon uptake by extratropical ecosystems. Global Change Biology, 2018,24(5):2117-2128. |
[43] | Wu D H, Zhao X, Liang S L , et al. Time-lag effects of global vegetation responses to climate change. Global Change Biology, 2015,21(9):3520-3531. |
[44] | Ahlström A, Raupach M R, Schurgers G , et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science, 2015,348(6237):895-899. |
[45] | Gilmanov T G, Tieszen L L, Wylie B K , et al. Integration of CO2 flux and remotely-sensed data for primary production and ecosystem respiration analyses in the Northern Great Plains: Potential for quantitative spatial extrapolation. Global Ecology and Biogeography, 2005,14(3):271-292. |
[46] | Liu Jiyuan, Kuang Wenhui, Zhang Zengxiang , et al. Spatiotemporal characteristics, patterns and causes of land use changes in China since the late 1980s. Acta Geographica Sinica, 2014,69(1):3-14. |
[ 刘纪远, 匡文慧, 张增祥 , 等. 20世纪80年代末以来中国土地利用变化的基本特征与空间格局. 地理学报, 2014,69(1):3-14.] | |
[47] | Zhang X Y, Liu L L, Henebry G M . Impacts of land cover and land use change on long-term trend of land surface phenology: A case study in agricultural ecosystems. Environmental Research Letters, 2019,14(4):044020. |
[1] | QI Guizeng, BAI Hongying, ZHAO Ting, MENG Qing, ZHANG Shanhong. Sensitivity and areal differentiation of vegetation responses to hydrothermal dynamics on the southern and northern slopes of the Qinling Mountains in Shaanxi province [J]. Acta Geographica Sinica, 2021, 76(1): 44-56. |
[2] | JIN Kai, WANG Fei, HAN Jianqiao, SHI Shangyu, DING Wenbin. Contribution of climatic change and human activities to vegetation NDVI change over China during 1982-2015 [J]. Acta Geographica Sinica, 2020, 75(5): 961-974. |
[3] | PENG Wenfu, ZHANG Dongmei, LUO Yanmei, TAO Shuai, XU Xinliang. Influence of natural factors on vegetation NDVI using geographical detection in Sichuan Province [J]. Acta Geographica Sinica, 2019, 74(9): 1758-1776. |
[4] | Jiangbo GAO, Kewei JIAO, Shaohong WU. Revealing the climatic impacts on spatial heterogeneity of NDVI in China during 1982-2013 [J]. Acta Geographica Sinica, 2019, 74(3): 534-543. |
[5] | Haidong GAO, Guowei PANG, Zhanbin LI, Shengdong CHENG. Evaluating the potential of vegetation restoration in the Loess Plateau [J]. Acta Geographica Sinica, 2017, 72(5): 863-874. |
[6] | Dongdong KONG, Qiang ZHANG, Wenlin HUANG, Xihui GU. Vegetation phenology change in Tibetan Plateau from 1982 to2013 and its related meteorological factors [J]. Acta Geographica Sinica, 2017, 72(1): 39-52. |
[7] | Yuehong LONG, Jianxin QIN, Xinguang HE, Zhun YANG. Wavelet multi-resolution analysis of vegetation dynamic change in Dongting Lake Basin [J]. Acta Geographica Sinica, 2015, 70(9): 1491-1502. |
[8] | Mingjun DING, Qian CHEN, Liangjie XIN, Lanhui LI, Xiubin LI. Spatial and temporal variations of multiple cropping index in China based on SPOT-NDVI during 1999-2013 [J]. Acta Geographica Sinica, 2015, 70(7): 1080-1090. |
[9] | Shiji LI, Xiubin LI, Minghong TAN. Impacts of rural-urban migration on vegetation cover in ecologically fragile areas: Taking Inner Mongolia as a case [J]. Acta Geographica Sinica, 2015, 70(10): 1622-1631. |
[10] | YU Bohua, LV Changhe, LV Tingting, YANG Aqiang, LIU Chuang. Datasets of the boundary and area of the Tibetan Plateau [J]. Acta Geographica Sinica, 2014, 69(s1): 65-68. |
[11] | ZHANG Xuezhen, DAI Junhu, GE Quansheng. Spatial Differences of Changes in Spring Vegetation activities across Eastern China during 1982-2006 [J]. Acta Geographica Sinica, 2012, 67(1): 53-61. |
[12] | LI Zhengguo, TANG Huajun, YANG Peng, ZHOU Qingbo, WUWenbin, ZOU Jinqiu, ZHANG Li, CHANG Hsiaofei. Responses of Cropland Phenophases to Agricultural Thermal Resources Change in Northeast China [J]. Acta Geographica Sinica, 2011, 66(7): 928-939. |
[13] | ZHANG Geli, XU Xingliang, ZHOU Caiping, ZHANG Hongbin, OUYANG Hua. Responses of Vegetation Changes to Climatic Variations in Hulun Buir Grassland in Past 30 Years [J]. Acta Geographica Sinica, 2011, 66(1): 47-58. |
[14] | CUI Linli1, SHI Jun2, YANG Yinming1, FAN Wenyi3. Ten-day Response of vegetation NDVI to the Variations of Temperature and Precipitation in Eastern China [J]. Acta Geographica Sinica, 2009, 64(7): 850-860. |
[15] | ZHUO Li, CAO Xin, CHEN Jin, CHEN Zhongxin, SHI Peijun. Assessment of Grassland Ecological Restoration Project in Xilin Gol Grassland [J]. Acta Geographica Sinica, 2007, 62(5): 471-480. |