Acta Geographica Sinica ›› 2019, Vol. 74 ›› Issue (12): 2614-2630.doi: 10.11821/dlxb201912014
• Resources, Environment and Sustainable Development • Previous Articles Next Articles
WANG Zhenbo1,2(), LIANG Longwu1,2, WANG Xujing3
Received:
2019-03-07
Revised:
2019-11-23
Online:
2019-12-25
Published:
2019-12-25
Contact:
WANG Zhenbo
E-mail:wangzb@igsnrr.ac.cn
Supported by:
WANG Zhenbo, LIANG Longwu, WANG Xujing. Spatio-temporal evolution patterns and influencing factors of PM2.5 in Chinese urban agglomerations[J].Acta Geographica Sinica, 2019, 74(12): 2614-2630.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
The collinearity test results of indexes
人均 GDP | 人口 密度 | 城市化 水平 | 工业化 水平 | 产业结构 高级度 | 外贸 依存度 | 技术 扶持水平 | 能源 消耗 | |
---|---|---|---|---|---|---|---|---|
人均GDP | 1 | |||||||
人口密度 | 0.017 | 1 | ||||||
城市化水平 | 0.002 | 0.061** | 1 | |||||
工业化水平 | 0.009 | 0.045** | 0.000 | 1 | ||||
产业结构高级度 | 0.036* | 0.166** | 0.054** | 0.049** | 1 | |||
外贸依存度 | 0.019 | 0.226** | 0.049** | 0.036* | 0.183** | 1 | ||
技术扶持水平 | 0.161** | 0.096** | -0.018 | 0.006 | 0.070** | 0.109** | 1 | |
能源消耗 | 0.010 | 0.014 | -0.007 | 0.002 | 0.031 | 0.003 | 0.019 | 1 |
Tab. 2
Standard values of PM2.5 concentration established by the World Health Organization and the Chinese government
世界卫生组织(WHO)2005年发布的《空气质量准则》 | 中国2016年实施的《环境空气质量标准》 | |||||
---|---|---|---|---|---|---|
类别 | 年均值(ug/m3) | 日均值(ug/m3) | 类别 | 年均值(ug/m3) | 日均值(ug/m3) | |
准则值 | 10 | 25 | 准则值 | 35 | 75 | |
过渡期目标1 | 35 | 75 | - | - | - | |
过渡期目标2 | 25 | 50 | - | - | - | |
过渡期目标3 | 15 | 37.5 | - | - | - |
Tab. 3
Spatial autocorrelation index of PM2.5 annual average concentration in China's urban agglomerations from 2000 to 2015
年份 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
所有城市群 | 0.82*** | 0.79*** | 0.77*** | 0.84*** | 0.74*** | 0.75*** | 0.80*** | 0.82*** | 0.76*** | 0.76*** | 0.78*** | 0.79*** | 0.79*** | 0.83*** | 0.81*** | 0.80*** |
京津冀 | 0.33** | 0.41** | 0.41** | 0.39** | 0.36** | 0.37** | 0.36** | 0.36** | 0.33** | 0.33** | 0.33** | 0.33** | 0.34** | 0.35** | 0.35** | 0.34** |
长江三角洲 | 0.68*** | 0.66*** | 0.68*** | 0.67*** | 0.68*** | 0.65*** | 0.66*** | 0.64*** | 0.69*** | 0.66*** | 0.66*** | 0.68*** | 0.67*** | 0.67*** | 0.67*** | 0.68*** |
珠江三角洲 | 0.13* | 0.16* | -0.10 | 0.20* | 0.18* | -0.16* | 0.11 | -0.14* | 0.13* | 0.15* | 0.17* | 0.12* | 0.14* | 0.17* | 0.25* | 0.23* |
长江中游 | 0.84*** | 0.77*** | 0.55*** | 0.73*** | 0.19*** | 0.49*** | 0.57*** | 0.40*** | 0.38*** | 0.43*** | 0.59*** | 0.68*** | 0.41*** | 0.66*** | 0.64*** | 0.61*** |
成渝 | 0.38** | 0.54*** | 0.32** | 0.30* | 0.31** | 0.27* | 0.19 | 0.23 | 0.15 | 0.12 | 0.19 | 0.20 | 0.20 | 0.19 | 0.12 | 0.19 |
辽中南 | 0.11* | 0.11* | 0.12* | 0.28*** | 0.15* | 0.15* | 0.14* | 0.21** | 0.15* | 0.21** | 0.10 | 0.15* | 0.20** | 0.18** | 0.12* | 0.13* |
山东半岛 | 0.44*** | 0.49*** | 0.46*** | 0.51*** | 0.48*** | 0.54*** | 0.53*** | 0.50*** | 0.49*** | 0.51*** | 0.58*** | 0.53*** | 0.53*** | 0.52*** | 0.53*** | 0.47*** |
海峡西岸 | 0.25* | -0.16* | -0.29 | 0.10* | -0.14 | 0.11* | 0.24 | 0.12* | 0.10 | 0.24* | 0.11* | 0.10* | 0.17 | 0.11* | 0.13* | 0.21 |
哈长 | 0.55** | 0.67*** | 0.57*** | 0.62*** | 0.74*** | 0.74*** | 0.71*** | 0.75*** | 0.81*** | 0.72*** | 0.68*** | 0.77*** | 0.75*** | 0.61*** | 0.61*** | 0.52*** |
中原 | 0.55*** | 0.52*** | 0.28* | 0.41** | 0.42** | 0.38** | 0.41** | 0.47** | 0.47** | 0.49*** | 0.48*** | 0.42** | 0.41** | 0.45*** | 0.53*** | 0.49*** |
关中 | -0.41* | -0.31* | -0.09* | -0.13 | -0.23* | 0.09* | 0.11* | 0.19** | 0.12* | 0.10 | 0.09* | 0.08 | 0.10* | 0.11 | 0.10* | 0.11* |
北部湾 | 0.79*** | 0.76*** | 0.85*** | 0.92*** | 0.93*** | 0.93*** | 0.93*** | 0.87*** | 0.97*** | 0.95*** | 0.96*** | 0.96*** | 0.97*** | 0.92*** | 0.93*** | 0.90*** |
晋中 | 0.23* | -0.10* | -0.44 | -0.59* | -0.52* | -0.10 | -0.34* | -0.25* | 0.20 | 0.12* | 0.31* | 0.11* | 0.13* | 0.10* | 0.12 | 0.15* |
呼包鄂榆 | -0.18* | 0.15 | -0.43 | -0.77* | -0.78* | -0.56* | -0.47* | -0.36 | 0.58* | 0.79* | 0.67* | 0.50* | 0.91* | 0.87* | 0.88* | 0.93* |
滇中 | 0.42* | 0.46* | 0.57* | 0.85* | 0.87* | 0.65* | 0.13* | 0.80* | 0.61* | 0.73* | 0.81* | 0.45* | 0.82* | 0.78* | 0.67* | 0.73* |
黔中 | -0.45* | 0.10 | -0.42* | -0.17* | -0.16* | -0.16* | -0.17* | -0.10 | 0.11 | 0.25* | 0.26* | 0.24 | 0.23* | 0.38* | 0.19* | 0.29* |
兰西 | 0.81** | 0.81** | 0.83** | 0.79** | 0.76** | 0.90** | 0.87** | 0.84** | 0.77** | 0.67* | 0.59* | 0.74** | 0.66* | 0.68* | 0.75** | 0.76** |
宁夏沿黄 | 0.33* | 0.19* | 0.13 | 0.18* | 0.23* | 0.23* | 0.15* | 0.25* | 0.30* | 0.22 | 0.28* | 0.21* | 0.25* | 0.12 | 0.21* | 0.32* |
Tab. 4
Results of factors affecting PM2.5 pollution in China's urban agglomerations from 2000 to 2015
城市群 变量 | 京津冀 | 长江 三角洲 | 珠江 三角洲 | 长江 中游 | 成渝 | 辽中南 | 山东 半岛 | 海峡 西岸 | 哈长 | 中原 | 关中 | 北部湾 | 晋中 | 呼包 鄂榆 | 滇中 | 黔中 | 兰西 | 宁夏 沿黄 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Intercept | -2.128*** | 3.366*** | -0.031 | -0.073 | -0.295 | 0.852*** | 0.697*** | 0.599*** | -1.010*** | -0.694 | 0.225 | 3.413*** | 0.578 | 2.067 | 1.797* | -1.699* | 0.583 | 0.655 |
lnPGDP | 0.022 | 0.056** | -0.006 | 0.108*** | 0.066* | 0.083*** | 0.074*** | 0.064*** | 0.116*** | -0.093 | 0.009 | -0.048*** | 0.046 | -0.018 | 0.032 | 0.114 | -0.002 | -0.094 |
lnPD | 0.495*** | -0.020 | 0.099*** | 0.137*** | 0.317*** | 0.269*** | 0.096*** | 0.103*** | 0.597*** | 0.454*** | 0.306*** | 0.231** | 0.166** | 0.091** | -0.058 | -0.118 | -0.041 | 0.123 |
UR | -0.218** | -0.002** | -0.075*** | 0.024 | -0.104 | 0.304*** | 0.115*** | 0.001 | 0.265*** | -0.024 | 0.206*** | 0.143 | -0.006 | 0.858*** | 0.231*** | -0.091 | 0.232 | 0.693** |
IR | -0.818 | 0.605** | 0.742*** | -0.164 | -0.237 | -0.077 | 0.410** | -0.001 | 0.083 | 0.139* | 0.351 | 0.063 | -0.059 | 9.764*** | 0.108** | 0.331 | -0.105 | 1.577 |
ADIS | -1.300** | 0.114 | -0.605*** | -0.371 | -0.170 | -0.583*** | -0.527*** | -0.205* | -0.742** | -0.042 | 0.040 | 0.042 | -0.247 | -8.500*** | 0.233** | -1.242*** | 0.095 | 1.796 |
FDI | -0.232*** | -0.013** | -0.002** | -0.263*** | 0.043 | -0.011 | -0.034 | -0.382*** | -0.542*** | 0.741 | 0.044 | -0.104** | 0.722 | 0.171 | -1.694* | 1.464 | -0.422 | 0.325 |
TS | 4.844 | -6.201 | -4.615** | -7.039** | -3.623 | -0.973 | 0.704 | 3.952* | -1.468 | -5.727 | -6.114 | 13.827 | -18.973** | 0.389 | -4.938* | 5.407** | -0.611 | -20.180 |
lnEC | -0.003 | 0.013* | 0.009** | 0.001 | -0.001 | 0.032*** | 0.016*** | 0.004 | 0.046*** | 0.047*** | 0.026*** | -0.030 | 0.021* | 0.015 | 0.065** | 0.052*** | -0.008 | 0.005 |
W×lnPM2.5 | 0.676*** | 0.236*** | 0.786*** | 0.652*** | 0.903*** | 0.872*** | 0.948*** | 0.788*** | 0.734*** | 0.236* | 0.662*** | 0.236* | 0.787*** | 0.690*** | 0.770*** | 0.721*** | 0.817 | 0.487*** |
W×lnPGDP | 0.066 | 0.037*** | 0.070 | 0.002*** | 0.034** | 0.060** | 0.133*** | 0.056*** | 0.178*** | 0.222 | -0.042 | -0.230*** | 0.083 | 0.185 | -0.019 | -0.225 | 0.188 | 0.214 |
W×lnPD | -0.203*** | -0.041 | 0.121 | 0.088 | -0.247*** | -0.303*** | -0.066* | -0.106*** | -0.329*** | -0.254** | -0.280*** | -0.330** | -0.353** | -0.026 | -0.298 | -0.797*** | -0.168 | -0.183 |
W×UR | 0.147 | -0.013*** | -0.003 | -0.210 | -0.611* | 0.385*** | 0.229*** | 0.007 | 2.088*** | 0.049 | 0.208** | -0.197 | -0.005 | 0.780** | 0.346** | 1.067* | -0.507 | -0.550 |
W×IR | 2.615* | -0.612 | 2.187*** | 1.152*** | -0.377 | 0.660*** | 0.169 | 0.001 | 0.003 | 0.282*** | 1.206*** | 0.383 | 0.071 | 6.792** | 0.182 | -0.253 | 0.100 | -0.744 |
W×ADIS | 2.024 | -0.566 | 2.296*** | -0.605 | -0.077 | -0.004 | 0.071 | 0.216* | 0.455** | -0.058 | 0.910** | -0.885 | 0.161 | 5.740 | 0.266* | 1.842*** | -0.466 | -1.28 |
W×FDI | 0.204 | -0.367*** | -0.034*** | -0.169 | 0.234 | 0.174 | 0.008 | -0.058 | -0.644*** | 1.215 | 0.060 | 0.621 | -1.640** | -1.735* | 2.639 | -2.607* | 0.991 | 0.610 |
W×TS | -8.491* | 5.481 | 2.973 | 7.609 | 3.475 | 0.298 | -2.713*** | -3.932 | -0.688 | -15.23** | 10.358* | -2.935 | -21.698* | 20.184 | 0.717*** | -3.575 | -0.402 | 3.257 |
W×lnEC | 0.101*** | 0.099*** | 0.020** | -0.016 | 0.024 | 0.058*** | 0.034*** | -0.010 | 0.140*** | 0.066** | 0.025** | -0.141 | 0.043* | 0.152*** | -0.023 | 0.168*** | 0.120*** | -0.035 |
R2 | 0.942 | 0.816 | 0.952 | 0.768 | 0.940 | 0.947 | 0.972 | 0.871 | 0.945 | 0.705 | 0.888 | 0.685 | 0.891 | 0.952 | 0.960 | 0.946 | 0.953 | 0.796 |
loglikehood | 114.39 | 135.64 | 198.26 | 115.54 | 201.96 | 195.92 | 324.19 | 167.49 | 121.30 | 194.61 | 159.78 | 168.39 | 101.84 | 50.59 | 69.35 | 76.22 | 74.34 | 48.64 |
[1] |
Fang Chuanglin . Important progress and prospects of China's urbanization and urban agglomeration in the past 40 years of reform and opening-up. Economic Geography, 2018,38(9):1-9.
doi: 10.2307/142321 |
[ 方创琳 . 改革开放40年来中国城镇化与城市群取得的重要进展与展望. 经济地理, 2018,38(9):1-9.]
doi: 10.2307/142321 |
|
[2] |
Wang Z B, Liang L W, Sun Z , et al. Spatiotemporal differentiation and the factors influencing urbanization and ecological environment synergistic effects within the Beijing-Tianjin-Hebei urban agglomeration. Journal of Environmental Management, 2019,243:227-239.
doi: 10.1016/j.jenvman.2019.04.088 pmid: 31096175 |
[3] | Wang Zhenbo, Liang Longwu, Fang Chuanglin . Temporal and spatial evolution characteristics of ecological security patterns of Beijing-Tianjin-Hebei mega-urban group and its influencing factors. Journal of Ecology, 2018,38(12):4132-4144. |
[ 王振波, 梁龙武, 方创琳 . 京津冀特大城市群生态安全格局时空演变特征及其影响因素. 生态学报, 2018,38(12):4132-4144.] | |
[4] |
Tian S, Pan Y, Liu Z , et al. Size-resolved aerosol chemical analysis of extreme haze pollution events during early 2013 in urban Beijing, China. Journal of Hazardous Materials, 2014,279:452-460.
doi: 10.1016/j.jhazmat.2014.07.023 |
[5] |
Tecer L H, Alagha O, Karaca F . Particulate matter (PM2.5, PM10-2.5, and PM10) and children's hospital admissions for asthma and respiratory diseases: A bidirectional case-crossover study. Journal of Toxicology and Environmental Health (Part A), 2008,71(8):512-520.
doi: 10.1080/15287390801907459 pmid: 18338286 |
[6] |
Santibañez D A, Ibarra S, Matus P . A five-year study of particulate matter (PM2.5) and cerebrovascular diseases. Environmental Pollution, 2013,181:1-6.
doi: 10.1016/j.envpol.2013.05.057 |
[7] |
Massimiliano B, Silvia G, Alice C , et al. Is there a link between air pollution and mental disorders. Environment International, 2018,118:154-168.
doi: 10.1016/j.envint.2018.05.044 pmid: 29883762 |
[8] |
Franklin M, Zeka A, Schwartz J . Association between PM2.5 and all-cause and specific-cause mortality in 27 US communities. Journal of Exposure Science and Environmental Epidemiology, 2007,17(3):279.
doi: 10.1038/sj.jes.7500530 pmid: 17006435 |
[9] |
Kourtchev I, Warnke J, Maenhaut W , et al. Polar organic marker compounds in PM2.5 aerosol from a mixed forest site in western Germany. Chemosphere, 2008,73(8):1308-1314.
doi: 10.1016/j.chemosphere.2008.07.011 |
[10] |
Lee P K H, Brook J R, Dabek-Zlotorzynska E , et al. Identification of the major sources contributing to PM2.5 observed in Toronto. Environmental Science & Technology, 2003,37(21):4831-4840.
doi: 10.1088/1361-6560/ab63b6 pmid: 31851954 |
[11] | Chowdhury Z, Zheng M, Schauer J J , et al. Speciation of ambient fine organic carbon particles and source apportionment of PM2.5 in Indian cities. Journal of Geophysical Research: Atmospheres, 2007,112(D15). |
[12] |
Sun Y, Zhuang G, Tang A , et al. Chemical characteristics of PM2.5 and PM10 in haze fog episodes in Beijing. Environmental Science & Technology, 2006,40(10):3148-3155.
doi: 10.1088/1361-6560/ab63b6 pmid: 31851954 |
[13] |
Xiong Huanhuan, Liang Longwu . Dynamic comparative analysis of temporal and spatial distribution of PM2.5 in Chinese cities. Resources Science, 2017,39(1):136-146.
doi: 10.18402/resci.2017.01.14 |
[ 熊欢欢, 梁龙武 . 中国城市PM2.5时空分布的动态比较分析. 资源科学, 2017,39(1):136-146.]
doi: 10.18402/resci.2017.01.14 |
|
[14] |
Pinto J P, Lefohn A S, Shadwick D S . Spatial variability of PM2.5 in urban areas in the United States. Journal of the Air & Waste Management Association, 2004,54(4):440-449.
doi: 10.1088/1361-6560/ab63b5 pmid: 31851952 |
[15] |
Cao C, Jiang W, Wang B , et al. Inhalable microorganisms in Beijing's PM2.5 and PM10 pollutants during a severe smog event. Environmental Science & Technology, 2014,48(3):1499-1507.
doi: 10.1088/1361-6560/ab63b6 pmid: 31851954 |
[16] |
Wang Z B, Fang C L . Spatial-temporal characteristics and determinants of PM2.5 in the Bohai Rim Urban Agglomeration. Chemosphere, 2016,148:148-162.
doi: 10.1016/j.chemosphere.2015.12.118 pmid: 26802272 |
[17] | Yang Mian, Wang Yin . Temporal and spatial characteristics and influencing factors of PM2.5 in the Yangtze River Economic Belt. China's Population, Resources and Environment, 2017,27(1):91-100. |
[ 杨冕, 王银 . 长江经济带PM2.5时空特征及影响因素研究. 中国人口·资源与环境, 2017,27(1):91-100.] | |
[18] | Yan Yaxue, Qi Shaozhou . Time and space effects of foreign direct investment on China's urban haze (PM2.5) pollution. China's Population, Resources and Environment, 2017,27(4):68-77. |
[ 严雅雪, 齐绍洲 . 外商直接投资对中国城市雾霾(PM2.5)污染的时空效应检验. 中国人口·资源与环境, 2017,27(4):68-77.] | |
[19] | Wu Jiansheng, Wang Qian, Li Jiangcheng , et al. Comparison of spatial differentiation simulation models of PM2.5 concentration: Taking the Beijing-Tianjin-Hebei region as an example. Environmental Science, 2017,38(6):2191-2201. |
[ 吴健生, 王茜, 李嘉诚 , 等. PM2.5浓度空间分异模拟模型对比: 以京津冀地区为例. 环境科学, 2017,38(6):2191-2201.] | |
[20] |
He Xiang, Lin Zhenshan . Analysis of the influence of the interaction of influencing factors on the change of PM2.5 concentration based on GAM model. Environmental Science, 2017(1):22-32.
doi: 10.1039/c6em00593d pmid: 28092384 |
[ 贺祥, 林振山 . 基于GAM模型分析影响因素交互作用对PM2.5浓度变化的影响. 环境科学, 2017(1):22-32.]
doi: 10.1039/c6em00593d pmid: 28092384 |
|
[21] |
He Xiang, Lin Zhenshan, Liu Huiyu . Analysis of factors affecting PM2.5 concentration in Jiangsu Province based on grey correlation model. Acta Geographica Sinica, 2016,71(7):1119-1129.
doi: 10.11821/dlxb201607003 |
[ 贺祥, 林振山, 刘会玉 . 基于灰色关联模型对江苏省PM2.5浓度影响因素的分析. 地理学报, 2016,71(7):1119-1129.]
doi: 10.11821/dlxb201607003 |
|
[22] | Zhou Liang, Zhou Chenghu, Yang Fan . Analysis of temporal and spatial evolution characteristics and driving factors of PM2.5 in China from 2000 to 2011. Acta Geographica Sinica, 2017,72(11):161-174. |
[ 周亮, 周成虎, 杨帆 . 2000-2011年中国PM2.5时空演化特征及驱动因素解析. 地理学报, 2017,72(11):161-174.] | |
[23] |
Eeftens M, Beelen R, de Hoogh K , et al. Development of land use regression models for PM2.5, PM2.5 absorbance, PM10 and PMcoarse in 20 European study areas: Results of the ESCAPE project. Environmental Science & Technology, 2012,46(20):11195-11205.
doi: 10.1088/1361-6560/ab63b6 pmid: 31851954 |
[24] |
Song Y, Xie S, Zhang Y , et al. Source apportionment of PM2.5 in Beijing using principal component analysis absolute principal component scores and UNMIX. Science of the Total Environment, 2006,372(1):278-286.
doi: 10.1016/j.scitotenv.2006.08.041 pmid: 17097135 |
[25] |
Kloog I, Nordio F, Coull B A , et al. Incorporating local land use regression and satellite aerosol optical depth in a hybrid model of spatio-temporal PM2.5 exposures in the Mid-Atlantic states. Environmental Science & Technology, 2012,46(21):11913-11921.
doi: 10.1088/1361-6560/ab63b6 pmid: 31851954 |
[26] |
Liu H, Fang C, Zhang X , et al. The effect of natural and anthropogenic factors on haze pollution in Chinese cities: A spatial econometrics approach. Journal of Cleaner Production, 2017,165:323-333.
doi: 10.1016/j.jclepro.2017.07.127 |
[27] |
Wang Zhenbo, Liang Longwu, Lin Xiongbin . Mode summary of air pollution in Beijing-Tianjin-Hebei urban agglomeration and evaluation of treatment effects. Environmental Science, 2017,38(10):4005-4014.
doi: 10.13227/j.hjkx.201701007 pmid: 29965182 |
[ 王振波, 梁龙武, 林雄斌 . 京津冀城市群空气污染的模式总结与治理效果评估. 环境科学, 2017,38(10):4005-4014.]
doi: 10.13227/j.hjkx.201701007 pmid: 29965182 |
|
[28] | Liu Huajun, Lei Mingyu . The dilemma of coordinated management of smog pollution areas in China and its solution. China's Population, Resources and Environment, 2018,28(10):88-95. |
[ 刘华军, 雷名雨 . 中国雾霾污染区域协同治理困境及其破解思路. 中国人口·资源与环境, 2018,28(10):88-95.] | |
[29] | Zhou Zhen, Xing Yaoyao, Sun Hongxia . Interval game analysis of government subsidy to the control strategy of Beijing-Tianjin-Hebei smog. System Engineering Theory and Practice, 2017,37(10):2640-2648. |
[ 周珍, 邢瑶瑶, 孙红霞 . 政府补贴对京津冀雾霾防控策略的区间博弈分析. 系统工程理论与实践, 2017,37(10):2640-2648.] | |
[30] |
Mu Mu, Zhang Renhe . Dealing with smog weather: Meteorological science and technology are promising. Science China: Earth Science, 2014,44(1):1-2.
doi: 10.1007/BF02882066 pmid: 18763082 |
[ 穆穆, 张人禾 . 应对雾霾天气: 气象科学与技术大有可为. 中国科学: 地球科学, 2014,44(1):1-2.]
doi: 10.1007/BF02882066 pmid: 18763082 |
|
[31] |
Fang C . Progress and the future direction of research into urban agglomeration in China. Acta Geographica Sinica, 2014,69(8):1130-1144.
doi: 10.11821/dlxb201408009 |
[32] | Wang Jing, Fang Chuanglin . A new driving force for the development of urban agglomerations in China. Geographical Research, 2011,30(2):335-347. |
[ 王婧, 方创琳 . 中国城市群发育的新型驱动力研究. 地理研究, 2011,30(2):335-347.] | |
[33] |
Fang C L, Liu H, Li G D . International progress and evaluation on interactive coupling effects between urbanization and the eco-environment. Journal of Geographical Sciences, 2016,26(8):1081-1116.
doi: 10.1007/s11442-016-1317-9 |
[34] |
Wang Zhenbo, Fang Chuanglin, Xu Guang , et al. Temporal and spatial variation of PM2.5 concentration in Chinese cities in 2014. Acta Geographica Sinica, 2015,70(11):1720-1734.
doi: 10.11821/dlxb201511003 |
[ 王振波, 方创琳, 许光 , 等. 2014年中国城市PM2.5浓度的时空变化规律. 地理学报, 2015,70(11):1720-1734.]
doi: 10.11821/dlxb201511003 |
|
[35] |
Fang Chuanglin, Mao Qizhi, Ni Pengfei . The controversy and exploration of scientific selection and grading development of Chinese urban agglomeration. Acta Geographica Sinica, 2015,70(4):515-527.
doi: 10.11821/dlxb201504001 |
[ 方创琳, 毛其智, 倪鹏飞 . 中国城市群科学选择与分级发展的争鸣及探索. 地理学报, 2015,70(4):515-527.]
doi: 10.11821/dlxb201504001 |
|
[36] |
Liu H, Fang C, Zhang X , et al. The effect of natural and anthropogenic factors on haze pollution in Chinese cities: A spatial econometrics approach. Journal of Cleaner Production, 2017,165:323-333.
doi: 10.1016/j.jclepro.2017.07.127 |
[37] |
Guang Wei, Xu Shuting . Spatial characteristics and coupling relationship of energy efficiency and industrial Structure in Liaoning Province. Acta Geographica Sinica, 2014,69(4):520-530.
doi: 10.11821/dlxb201404008 |
[ 关伟, 许淑婷 . 辽宁省能源效率与产业结构的空间特征及耦合关系. 地理学报, 2014,69(4):520-530.]
doi: 10.11821/dlxb201404008 |
|
[38] |
Li R, Hardy R, Zhang W , et al. Chemical characterization and source apportionment of PM2.5 in a Nonattainment Rocky Mountain Valley. Journal of Environmental Quality, 2018,47(2):238-245.
doi: 10.2134/jeq2017.07.0262 pmid: 29634806 |
[39] |
Huang Xiaogang, Zhao Jingbo, Cao Junyu , et al. Temporal and spatial variation characteristics and driving factors of O3 concentration in Chinese cities. Environmental Science, 2019,40(3):1120-1131.
doi: 10.1021/es051636z |
[ 黄小刚, 赵景波, 曹军骥 , 等. 中国城市O3浓度时空变化特征及驱动因素. 环境科学, 2019,40(3):1120-1131.]
doi: 10.1021/es051636z |
|
[40] |
Lee H J, Liu Y, Coull B A , et al. A novel calibration approach of MODIS AOD data to predict PM2.5 concentrations. Atmospheric Chemistry and Physics, 2011,11(15):7991.
doi: 10.5194/acp-11-7991-2011 |
[41] |
Fang Chuanglin, Wang Zhenbo, Xu Guang . The spatial distribution of PM2.5 in urban agglomerations in China. Journal of Geographical Sciences, 2016,26(11):1519-1532.
doi: 10.1016/j.scitotenv.2018.11.105 pmid: 30469058 |
[42] |
Hu M, Lin J, Wang J , et al. Spatial and temporal characteristics of particulate matter in Beijing, China using the empirical mode decomposition method. Science of the Total Environment, 2013,458:70-80.
doi: 10.1016/j.scitotenv.2013.04.005 pmid: 23644281 |
[43] |
Xi Qiangmin, Li Guoping . Spatial division of labor and spillover effects of production service industry in Beijing-Tianjin-Hebei region. Acta Geographica Sinica, 2015,70(12):1926-1938.
doi: 10.11821/dlxb201512006 |
[ 席强敏, 李国平 . 京津冀生产性服务业空间分工特征及溢出效应. 地理学报, 2015,70(12):1926-1938.]
doi: 10.11821/dlxb201512006 |
|
[44] |
Cheng Y, Wang Z, Ye X , et al. Spatiotemporal dynamics of carbon intensity from energy consumption in China. Journal of Geographical Sciences, 2014,24(4):631-650.
doi: 10.1007/s11442-014-1110-6 |
[45] |
Elhorst, Paul J . Applied spatial econometrics: Raising the bar. Spatial Economic Analysis, 2010,5(1):9-28.
doi: 10.1080/17421770903541772 |
[46] | Xu Chao, Wang Yunpeng, Li Lili . Study on the relationship between space-time distribution and total energy consumption of PM2.5 in China from 1998 to 2012. Ecological Science, 2018,37(1):108-120. |
[ 徐超, 王云鹏, 黎丽莉 . 中国1998-2012年PM2.5时空分布与能源消耗总量关系研究. 生态科学, 2018,37(1):108-120.] | |
[47] | Ministry of Environmental Protection of the People's Republic of China. Ambient Air Quality Standards (on trial). National Environmental Protection Standards of the People's Republic of China (GB3095-2012), 2012-02-29. |
[ 国家环境保护部. 环境空气质量标准(试行). 中华人民共和国国家环境保护标准(GB3095-2012), 2012-02-29.] | |
[48] |
Walter I W, Ugelow J . Environmental policies in developing countries. Ambio, 1979,8(2/3):102-109.
doi: 10.1002/(sici)1097-0193(1999)8:2/3<102::aid-hbm6>3.0.co;2-j pmid: 10524600 |
[49] | Xu Helian, Deng Yuping . Does foreign direct investment lead to environmental pollution in China? Spatial measurement based on Chinese provincial panel data. Management World, 2012(2):30-43. |
[ 许和连, 邓玉萍 . 外商直接投资导致了中国的环境污染吗? 基于中国省际面板数据的空间计量研究. 管理世界, 2012(2):30-43.] | |
[50] |
Jiang Lei, Zhou Haifeng, Bo Ling . Spatial heterogeneity analysis of the impact of foreign direct investment on air pollution: A case study of China's 150 cities' air quality index (AQI). Scientia Geographica Sinica, 2018,38(3):351-360.
doi: 10.13249/j.cnki.sgs.2018.03.004 |
[ 姜磊, 周海峰, 柏玲 . 外商直接投资对空气污染影响的空间异质性分析: 以中国150个城市空气质量指数(AQI)为例. 地理科学, 2018,38(3):351-360.]
doi: 10.13249/j.cnki.sgs.2018.03.004 |
|
[51] |
Cheng Zhonghua, Liu Jun, Li Lianshui . Research on the influence of industrial structure adjustment and technological progress on haze reduction. China Soft Science, 2019(1):146-154.
doi: 10.1007/s12011-017-0973-7 pmid: 28281223 |
[ 程中华, 刘军, 李廉水 . 产业结构调整与技术进步对雾霾减排的影响效应研究. 中国软科学, 2019(1):146-154.]
doi: 10.1007/s12011-017-0973-7 pmid: 28281223 |
[1] | CAO Guangzhong, CHEN Sichuang, LIU Tao. Changing spatial patterns of internal migration to five major urban agglomerations in China [J]. Acta Geographica Sinica, 2021, 76(6): 1334-1349. |
[2] | FANG Yuanping, BI Doudou, CHEN Hongyang, PENG Ting. Spatial effects of knowledge-intensive business services clustering on tourism innovation in urban aggolomerations [J]. Acta Geographica Sinica, 2021, 76(6): 1521-1536. |
[3] | HU Pan, CHEN Bo, SHI Peijun. Spatiotemporal patterns and influencing factors of rainstorm-induced flood disasters in China [J]. Acta Geographica Sinica, 2021, 76(5): 1148-1162. |
[4] | GUO Xiangyang, MU Xueqing, DING Zhengshan, QIN Dongli. Nonlinear effects and driving mechanism of multidimensional urbanization on PM2.5 concentrations in the Yangtze River Delta [J]. Acta Geographica Sinica, 2021, 76(5): 1274-1293. |
[5] | ZHU Zheng, ZHU Xiang, LI Shuangshuang. Evolution process and characteristics of spatial structure of urban agglomeration in the middle reaches of the Yangtze River [J]. Acta Geographica Sinica, 2021, 76(4): 799-817. |
[6] | GUO Fuyou, TONG Lianjun, QIU Fangdao, LI Yiming. Spatio-temporal differentiation characteristics and influencing factors of green development in the eco-economic corridorof the Yellow River Basin [J]. Acta Geographica Sinica, 2021, 76(3): 726-739. |
[7] | CAI Ruiting, XIAO Shun, DONG Zhibao, CAO Junji, ZHANG Ningning, LIU Suixin, SHEN Zhenxing, XU Hongmei, TAO Yan, LI Xingmin, WANG Xin, WANG Yumeng. Characteristics and health risk of polycyclic aromatic hydrocarbons in PM2.5 in the typical urban and rural areas of the Fenwei Plain [J]. Acta Geographica Sinica, 2021, 76(3): 740-752. |
[8] | XU Yu, LI Xiubin, XIN Liangjie. Differentiation of scale-farmland transfer rent and its influencing factors in China [J]. Acta Geographica Sinica, 2021, 76(3): 753-763. |
[9] | LIU Jiwei, MIN Suqin, JIN Mengdi. High resolution PM2.5 estimation based on the distributed perception deep neural network model [J]. Acta Geographica Sinica, 2021, 76(1): 191-205. |
[10] | CAO Zhi, LIU Yansui, LI Yurui, WANG Yongsheng. Spatial pattern and its influencing factors of specialized villages and towns in China [J]. Acta Geographica Sinica, 2020, 75(8): 1647-1666. |
[11] | WEI Suhao, LI Jing, LI Zeyi, ZONG Gang. Spatio-temporal evolution and its influencing factors of China's agricultural competitiveness [J]. Acta Geographica Sinica, 2020, 75(6): 1287-1300. |
[12] | LIU Min, HAO Wei. Spatial distribution and its influencing factors of national A-level tourist attractions in Shanxi Province [J]. Acta Geographica Sinica, 2020, 75(4): 878-888. |
[13] | OUYANG Xiao, ZHU Xiang. Spatio-temporal characteristics of urban land expansion in Chinese urban agglomerations [J]. Acta Geographica Sinica, 2020, 75(3): 571-588. |
[14] | REN Yufei, FANG Chuanglin, LI Guangdong, SUN Si'ao, BAO Chao, LIU Ruowen. Progress in local and tele-coupling relationship between urbanization and eco-environment [J]. Acta Geographica Sinica, 2020, 75(3): 589-606. |
[15] | DUAN Dezhong, DU Debin. Structural evolution of global high-tech trade system: Products, networks and influencing factors [J]. Acta Geographica Sinica, 2020, 75(12): 2759-2776. |