Acta Geographica Sinica ›› 2019, Vol. 74 ›› Issue (11): 2288-2302.doi: 10.11821/dlxb201911007
• Spatio-temporal Coupling of Water-land Elements in Mountainous Areas • Previous Articles Next Articles
JIA Yangwen,HAO Chunfeng,NIU Cunwen,QIU Yaqin,DU Junkai,XU Fei,LIU Huan
Received:
2019-05-14
Revised:
2019-10-09
Online:
2019-11-25
Published:
2019-11-01
Supported by:
JIA Yangwen,HAO Chunfeng,NIU Cunwen,QIU Yaqin,DU Junkai,XU Fei,LIU Huan. Spatio-temporal variations of precipitation and runoff and analyses of water-heat-human-land matching characteristics in typical mountainous areas of China[J].Acta Geographica Sinica, 2019, 74(11): 2288-2302.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Geographical and socio-economic indices in the study area"
指标 | 太行山 | 横断山 | 黔桂喀斯特 | |
---|---|---|---|---|
基础信息 | 面积(万km2) | 13.3 | 50.6 | 14.9 |
平均高程(m) | 842 | 3585 | 583 | |
人口 | 总人口(2010年)(万人) | 4387 | 1633 | 2140 |
人口密度(人/km2) | 331 | 32 | 143 | |
GDP | GDP(2010年) (亿元) | 11289 | 2485 | 2887 |
人均GDP(万元) | 2.57 | 1.52 | 1.35 | |
耕地 | 耕地面积(2014年) (万亩) | 8382 | 3609 | 3411 |
热量 | ≥10 ℃积温(℃) | 2800~4500 | 3000~6500 | 4000~8000 |
年平均辐射量(kW·h/m2) | 1300~1400 | 1400~1700 | 1000~1200 | |
降水 | 多年平均降水量(亿m3) | 718.6 | 4488.1 | 2088.7 |
多年平均降水深(mm) | 542 | 887 | 1398 | |
水资源 | 多年平均水资源总量(亿m3) | 151.9 | 2437.9 | 995.6 |
人均水资源量(m3) | 346 | 14930 | 4652 | |
耕地亩均水资源量(m3) | 181 | 6754 | 2919 | |
多年平均径流量(亿m3) | 94.8 | 2437.9 | 995.6 | |
多年平均径流深(mm) | 72 | 482 | 666 |
Tab. 2
Imbalance indices of water-heat-human-land factors in the study area"
要素 | 面积 | 耕地 | 降水 | 径流 | 人口 | GDP | 辐射 | 积温 |
---|---|---|---|---|---|---|---|---|
面积 | 0.000 | 0.022 | 0.014 | 0.022 | 0.022 | 0.024 | 0.003 | 0.012 |
耕地 | - | 0.000 | 0.032 | 0.041 | 0.005 | 0.010 | 0.023 | 0.030 |
降水 | - | - | 0.000 | 0.009 | 0.033 | 0.036 | 0.014 | 0.004 |
径流 | - | - | - | 0.000 | 0.042 | 0.045 | 0.021 | 0.011 |
人口 | - | - | - | - | 0.000 | 0.006 | 0.024 | 0.032 |
GDP | - | - | - | - | - | 0.000 | 0.026 | 0.035 |
辐射 | - | - | - | - | - | - | 0.000 | 0.011 |
积温 | - | - | - | - | - | - | - | 0.000 |
Tab. 3
Matching distance of water-heat-human-land factors in Taihang Mountains Area"
要素 | 面积 | 耕地 | 降水 | 径流 | 人口 | GDP | 辐射 | 积温 |
---|---|---|---|---|---|---|---|---|
面积 | 0.000 | -0.019 | 0.001 | 0.007 | -0.013 | -0.010 | 0.001 | -0.001 |
耕地 | 0.019 | 0.000 | 0.021 | 0.027 | 0.006 | 0.010 | 0.020 | 0.019 |
降水 | -0.001 | -0.021 | 0.000 | 0.006 | -0.015 | -0.011 | -0.001 | -0.002 |
径流 | -0.007 | -0.027 | -0.006 | 0.000 | -0.021 | -0.017 | -0.007 | -0.008 |
人口 | 0.013 | -0.006 | 0.015 | 0.021 | 0.000 | 0.004 | 0.014 | 0.013 |
GDP | 0.010 | -0.010 | 0.011 | 0.017 | -0.004 | 0.000 | 0.010 | 0.009 |
辐射 | -0.001 | -0.020 | 0.001 | 0.007 | -0.014 | -0.010 | 0.000 | -0.001 |
积温 | 0.001 | -0.019 | 0.002 | 0.008 | -0.013 | -0.009 | 0.001 | 0.000 |
Tab. 4
Matching distance of water-heat-human-land factors in Hengduan Mountains Region"
要素 | 面积 | 耕地 | 降水 | 径流 | 人口 | GDP | 辐射 | 积温 |
---|---|---|---|---|---|---|---|---|
面积 | 0.000 | 0.025 | -0.015 | -0.027 | 0.029 | 0.033 | -0.003 | -0.015 |
耕地 | -0.025 | 0.000 | -0.040 | -0.052 | 0.004 | 0.008 | -0.027 | -0.039 |
降水 | 0.015 | 0.040 | 0.000 | -0.012 | 0.044 | 0.048 | 0.012 | 0.000 |
径流 | 0.027 | 0.052 | 0.012 | 0.000 | 0.056 | 0.060 | 0.025 | 0.012 |
人口 | -0.029 | -0.004 | -0.044 | -0.056 | 0.000 | 0.004 | -0.031 | -0.043 |
GDP | -0.033 | -0.008 | -0.048 | -0.060 | -0.004 | 0.000 | -0.036 | -0.048 |
辐射 | 0.003 | 0.027 | -0.012 | -0.025 | 0.031 | 0.036 | 0.000 | -0.012 |
积温 | 0.015 | 0.039 | 0.000 | -0.012 | 0.043 | 0.048 | 0.012 | 0.000 |
Tab. 5
Matching distance of water-heat-human-land factors in Guizhou-Guangxi Karst Area"
要素 | 面积 | 耕地 | 降水 | 径流 | 人口 | GDP | 辐射 | 积温 |
---|---|---|---|---|---|---|---|---|
面积 | 0.000 | -0.001 | -0.013 | -0.015 | 0.000 | 0.006 | 0.003 | -0.008 |
耕地 | 0.001 | 0.000 | -0.012 | -0.014 | 0.001 | 0.007 | 0.004 | -0.008 |
降水 | 0.013 | 0.012 | 0.000 | -0.002 | 0.013 | 0.019 | 0.016 | 0.005 |
径流 | 0.015 | 0.014 | 0.002 | 0.000 | 0.015 | 0.021 | 0.018 | 0.007 |
人口 | 0.000 | -0.001 | -0.013 | -0.015 | 0.000 | 0.006 | 0.003 | -0.008 |
GDP | -0.006 | -0.007 | -0.019 | -0.021 | -0.006 | 0.000 | -0.003 | -0.014 |
辐射 | -0.003 | -0.004 | -0.016 | -0.018 | -0.003 | 0.003 | 0.000 | -0.011 |
积温 | 0.008 | 0.008 | -0.005 | -0.007 | 0.008 | 0.014 | 0.011 | 0.000 |
Tab. 6
Integrated matching distance of water-heat-human-land factors in study area (based on precipitation and runoff of 1956-2015)"
类别 | 要素 | 太行山 | 横断山 | 黔桂喀斯特 | 要素综合匹配距离 |
---|---|---|---|---|---|
地 | 面积 | 0.052 | 0.146 | 0.047 | 0.245 |
耕地 | 0.122 | 0.195 | 0.046 | 0.364 | |
小计 | 0.174 | 0.341 | 0.093 | 0.609 | |
水 | 降水 | 0.057 | 0.171 | 0.081 | 0.308 |
径流 | 0.092 | 0.245 | 0.093 | 0.430 | |
小计 | 0.149 | 0.416 | 0.174 | 0.738 | |
人 | 人口 | 0.085 | 0.211 | 0.046 | 0.343 |
GDP | 0.070 | 0.237 | 0.078 | 0.386 | |
小计 | 0.155 | 0.448 | 0.124 | 0.729 | |
热 | 辐射 | 0.054 | 0.146 | 0.057 | 0.257 |
积温 | 0.052 | 0.170 | 0.061 | 0.284 | |
小计 | 0.106 | 0.316 | 0.118 | 0.541 | |
区域综合匹配距离 | 0.585 | 1.522 | 0.510 | 2.617 |
Tab. 7
Integrated matching distance of water-heat-human-land factors in study area (based on precipitation and runoff of 2001-2015)"
类别 | 要素 | 太行山 | 横断山 | 黔桂喀斯特 | 要素综合匹配距离 |
---|---|---|---|---|---|
地 | 面积 | 0.054 | 0.144 | 0.046 | 0.243 |
耕地 | 0.123 | 0.193 | 0.045 | 0.362 | |
小计 | 0.177 | 0.337 | 0.091 | 0.605 | |
水 | 降水 | 0.059 | 0.166 | 0.078 | 0.303 |
径流 | 0.098 | 0.237 | 0.090 | 0.425 | |
小计 | 0.156 | 0.403 | 0.168 | 0.728 | |
人 | 人口 | 0.086 | 0.209 | 0.045 | 0.341 |
GDP | 0.071 | 0.235 | 0.077 | 0.383 | |
小计 | 0.158 | 0.444 | 0.122 | 0.724 | |
热 | 辐射 | 0.055 | 0.144 | 0.056 | 0.255 |
积温 | 0.054 | 0.170 | 0.060 | 0.284 | |
小计 | 0.108 | 0.314 | 0.117 | 0.539 | |
区域综合匹配距离 | 0.599 | 1.498 | 0.499 | 2.596 |
[1] | Viviroli D, Archer D R, Buytaert W , et al. Climate change and mountain water resources: Overview and recommendations for research, management and policy. Hydrology and Earth System Sciences, 2011,7(3):471-504. |
[2] | Liniger H, Gikonyo J, Kiteme B , et al. Assessing and managing scarce tropical mountain water resources. Mountain Research and Development, 2005,25(2):163-173. |
[3] | Zhang Jianxin, Deng Wei, Zhang Jifei . Foreign mountain development policy framework and its inspiration for mountain development in China. Mountain Research, 2016,34(3):366-373. |
[ 张建新, 邓伟, 张继飞 . 国外山区发展政策框架与启示. 山地学报, 2016,34(3):366-373.] | |
[4] | Sivapalan M, Konar M, Srinivasan V , et al. Socio-hydrology: Use-inspired water sustainability science for the Anthropocene. Earth's Future, 2014,2(4):225-230. |
[5] | Fu Bojie . Geography: From knowledge, science to decision making support. Acta Geographica Sinica, 2017,72(11):1923-1932. |
[ 傅伯杰 . 地理学: 从知识、科学到决策. 地理学报, 2017,72(11):1923-1932.] | |
[6] |
Wang Hao, Jia Yangwen . Theory and study methodology of dualistic water cycle in river basins under changing conditions. Journal of Hydraulic Engineering, 2016,47(10):1219-1226.
doi: 10.13243/j.cnki.slxb.20151297 |
[ 王浩, 贾仰文 . 变化中的流域“自然—社会”二元水循环理论与研究方法. 水利学报, 2016,47(10):1219-1226.]
doi: 10.13243/j.cnki.slxb.20151297 |
|
[7] | Wang Henian . Evolution of watershed ecological hydrology in Haihe basin mountainous area[D]. Beijing: Beijing Forest University, 2015. |
[ 王贺年 . 海河山区流域生态水文演变规律研究[D]. 北京: 北京林业大学, 2015.] | |
[8] | Pepin N, Bradley R S, Diaz H F , et al. Elevation-dependent warming in mountain regions of the world. Nature Climate Change, 2015,5(5):424-430. |
[9] | Beniston M, Stoffel M . Assessing the impacts of climatic change on mountain water resources. Science of the Total Environment, 2014,493:1129-1137. |
[10] | Kong Lan, Liang Hong, Huang Fasu . Analysis to runoff evolution features along time series in karst drainage basin: A case study in Guizhou province. Carsologica Sinica, 2007,26(4):341-346. |
[ 孔兰, 梁虹, 黄法苏 . 喀斯特流域径流量时序演变特征分析: 以贵州省为例. 中国岩溶, 2007,26(4):341-346.] | |
[11] | Huang Ying, Bai Shaoguang, Fang Shaodong . Distribution characteristics of hydrological factors in the southern basin of the Hengduan Mountain Valley in Yunnan Province. Journal of China Hydrology, 2007,27(5):83-85. |
[ 黄英, 柏绍光, 方绍东 . 云南纵向岭谷南延区域水文要素分布特征. 水文, 2007,27(5):83-85.] | |
[12] | Du Junkai, Li Xiaoxing, Jia Yangwen , et al. Temporal and spatial matching analysis of water and socio-economic resources of ten first-class water resources regions in China based gini coefficient method. Water Conservancy Science and Technology and Economy, 2018,24(6):1-8. |
[ 杜军凯, 李晓星, 贾仰文 , 等. 基于基尼系数法的全国十大水资源一级区水资源与经济社会要素时空匹配分析. 水利科技与经济, 2018,24(6):1-8.] | |
[13] | Zuo Qiting, Zhao Heng, Ma Junxia . Study on harmony equilibrium between water resources and economic society development. Journal of Hydraulic Engineering, 2014,45(7):785-792. |
[ 左其亭, 赵衡, 马军霞 . 水资源与经济社会和谐平衡研究. 水利学报, 2014,45(7):785-792.] | |
[14] | Mehta L . Water and human development. World Development, 2014,59(1):59-69. |
[15] | Feng Zhiming, Yang Yanzhao, You Zhen , et al. Research on the suitability of population distribution at the county level in China. Acta Geographica Sinica, 2014,69(6):723-737. |
[ 封志明, 杨艳昭, 游珍 , 等. 基于分县尺度的中国人口分布适宜度研究. 地理学报, 2014,69(6):723-737.] | |
[16] | Liu Dong, Liu Chunlei, Fu Qiang , et al. Construction and application of a refined index for measuring the regional matching characteristics between water and land resources. Ecological Indicators, 2018,91:203-211. |
[17] | Shi Peili, Geng Shoubao . Effects of soil and water interaction and optimal allocation of land use in mountainous areas. China Journal of Nature, 2018,40(1):25-32. |
[ 石培礼, 耿守保 . 山地水土要素耦合效应及土地利用的优化配置. 自然杂志, 2018,40(1):25-32.] | |
[18] | Lu Yajing . Interaction and joint regulation between water and soil resources in the alpine region: A case study in the Naqu River basin of the Tibetan China[D]. Beijing: China Institute of Water Resources and Hydropower Research, 2017. |
[ 卢亚静 . 高寒地区水土资源相互作用机制与联合调控[D]. 北京: 中国水利水电科学研究院, 2017.] | |
[19] | Liu Yansui, Gan Hong, Zhang Fugang . Analysis of the matching patterns of land and water resources in northeast China. Acta Geographica Sinica, 2006,61(8):847-854. |
[ 刘彦随, 甘红, 张富刚 . 中国东北地区农业水土资源匹配格局. 地理学报, 2006,61(8):847-854.] | |
[20] | Song Mengmei, An Liping, Jiang Li , et al. Cultivation patterns of main grain crops and evaluation of water and heat resource utilization efficiency in Jilin Province from 1993 to 2013. Resources Science, 2017,39(3):501-512. |
[ 宋梦美, 安萍莉, 江丽 , 等. 1993-2013年吉林省主粮作物种植布局及其水热资源利用效率评估. 资源科学, 2017,39(3):501-512.] | |
[21] | Ning Xiaoju, Qin Yaochen, Cui Yaoping , et al. The spatio-temporal change of agricultural hydrothermal conditions in China from 1951 to 2010. Acta Geographica Sinica, 2015,70(3):364-379. |
[ 宁晓菊, 秦耀辰, 崔耀平 , 等. 60年来中国农业水热气候条件的时空变化. 地理学报, 2015,70(3):364-379.] | |
[22] | Mendelsohn R, Dinar A . Climate, water, and agriculture. Land Economics, 2003,79(3):328-341. |
[23] | Du Junkai, Jia Yangwen, Hao Chunfeng , et al. Evolution law and attribution analysis of vertical distribution of blue water and green water in Taihang Mountain region. South-to-North Water Transfer and Water Science and Technology, 2018,16(2):64-73. |
[ 杜军凯, 贾仰文, 郝春沣 , 等. 太行山区蓝水绿水沿垂直带演变规律及其归因分析. 南水北调与水利科技, 2018,16(2):64-73.] | |
[24] | Hu Shi, Zhao Ruxin, Jia Yangwen , et al. The characteristic of vegetation vertical zonality and the influential factors in typical mountains in China. China Journal of Nature, 2018,40(1):12-16. |
[ 胡实, 赵茹欣, 贾仰文 , 等. 中国典型山地植被垂直地带性特征及其影响要素. 自然杂志, 2018,40(1):12-16.] | |
[25] | Xiong Kangning, Li Jin, Long Mingzhong . Features of soil and water loss and key issues in demonstration areas for combating karst rocky desertification. Acta Geographica Sinica, 2012,67(7):878-888. |
[ 熊康宁, 李晋, 龙明忠 . 典型喀斯特石漠化治理区水土流失特征与关键问题. 地理学报, 2012,67(7):878-888.] | |
[26] | Zhao Yuluan, Li Xiubin, Zhang Ying . Technology and application of mountainous area divisions in Qian-Gui Karst Areas. Journal of Geo-information Science, 2017,19(7):934-940. |
[ 赵宇鸾, 李秀彬, 张颖 . 黔桂喀斯特山地与山区类型划分技术与应用. 地球信息科学学报, 2017,19(7):934-940.] | |
[27] | Wei Fengying. Modern Climate Statistical Diagnosis and Prediction Techniques. Beijing: China Meteorological Press, 2007. |
[ 魏凤英 . 现代气候统计诊断与预测技术. 北京: 气象出版社, 2007.] | |
[28] | Zhang Jishi, Liu Liyu, Cheng Zhongshan , et al. Statistical Hydrology. Zhengzhou: Yellow River Conservancy Press, 2006. |
[ 张济世, 刘立昱, 程中山 , 等. 统计水文学. 郑州: 黄河水利出版社, 2006.] | |
[29] | Zhang Jihui, Li Jian, Tang Yan . Analysis of the spatio-temporal matching of water resource and economic development factors in China. Resources Science, 2012,34(8):1546-1555. |
[ 张吉辉, 李健, 唐燕 . 中国水资源与经济发展要素的时空匹配分析. 资源科学, 2012,34(8):1546-1555.] | |
[30] | Han Shumin, Yang Yonghui, Fan Tong , et al. Precipitation-runoff processes in Shimen hillslope micro-catchment of Taihang Mountain, north China. Hydrological Processes, 2012,26(9):1332-1341. |
[31] | Jia Yangwen, Ding Xiangyi, Wang Hao , et al. Attribution of water resources evolution in the highly water-stressed Hai River Basin of China. Water Resources Research, 2012,48(2):2513. |
[32] |
Wang Hao, You Jinjun . Progress of water resources allocation during the past 30 years in China. Journal of Hydraulic Engineering, 2016,47(3):265-271, 282.
doi: 10.13243/j.cnki.slxb.20150484 |
[ 王浩, 游进军 . 中国水资源配置30年. 水利学报, 2016,47(3):265-271, 282.]
doi: 10.13243/j.cnki.slxb.20150484 |
[1] | PENG Li, DENG Wei, TAN Jing, LIN Lei. Restriction of economic development in the Hengduan Mountains Area by land and water resources [J]. Acta Geographica Sinica, 2020, 75(9): 1996-2008. |
[2] | CHEN Ya-ning,XU Chang-chun,YANG Yu-hui,HAO Xing-ming,SHEN Yong-ping. Hydrology and Water Resources Variation and Its Responses to Regional Climate Change in Xinjiang [J]. Acta Geographica Sinica, 2009, 64(11): 1331-1341. |