Acta Geographica Sinica ›› 2019, Vol. 74 ›› Issue (11): 2273-2287.doi: 10.11821/dlxb201911006
• Spatio-temporal Coupling of Water-land Elements in Mountainous Areas • Previous Articles Next Articles
ZHOU Peng1,3,DENG Wei1,2,3(),PENG Li1,2,ZHANG Shaoyao1,3
Received:
2019-05-14
Revised:
2019-10-09
Online:
2019-11-25
Published:
2019-11-01
Contact:
DENG Wei
E-mail:dengwei@sicnu.edu.cn
Supported by:
ZHOU Peng, DENG Wei, PENG Li, ZHANG Shaoyao. Spatio-temporal coupling characteristic of water-land elements and its cause in typical mountains[J].Acta Geographica Sinica, 2019, 74(11): 2273-2287.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 2
The CIWL of ecological functional sub-region in Taihang Mountains region from 1990 to 2015
太行山地生态功能亚区 | 1990年 | 1995年 | 2000年 | 2005年 | 2010年 | 2015年 | 平均值 | 标准差 |
---|---|---|---|---|---|---|---|---|
永定河上游山间盆地林农草复合生态亚区 | 0.81 | 0.85 | 0.57 | 0.58 | 0.65 | 0.68 | 0.69 | 0.12 |
太行山山地落叶阔叶林生态亚区 | 0.84 | 0.80 | 0.66 | 0.62 | 0.63 | 0.68 | 0.71 | 0.09 |
太岳山山地丘陵落叶阔叶林生态亚区 | 0.84 | 0.67 | 0.67 | 0.71 | 0.63 | 0.67 | 0.70 | 0.07 |
太行山太岳山山间盆地丘陵农业生态亚区 | 0.91 | 0.69 | 0.74 | 0.81 | 0.70 | 0.83 | 0.78 | 0.09 |
豫西北太行山南麓丘陵农业生态亚区 | 0.79 | 0.53 | 0.68 | 0.68 | 0.66 | 0.71 | 0.67 | 0.09 |
中条山山地丘陵落叶阔叶林生态亚区 | 0.78 | 0.55 | 0.67 | 0.73 | 0.76 | 0.82 | 0.72 | 0.10 |
Tab. 3
The CIWL of ecological functional sub-region in Hengduan Mountains region from 1990 to 2015
横断山地生态亚区 | 1990年 | 1995年 | 2000年 | 2005年 | 2010年 | 2015年 | 平均值 | 标准差 |
---|---|---|---|---|---|---|---|---|
滇中高原盆谷滇青冈—元江栲林—云南松林生态亚区 | 1.13 | 1.08 | 1.09 | 0.96 | 0.83 | 0.94 | 1.00 | 0.11 |
金沙江下游干热河谷常绿灌丛—稀树草原生态亚区 | 1.20 | 1.15 | 1.11 | 1.03 | 0.91 | 0.98 | 1.06 | 0.11 |
滇西横断山半湿润常绿阔叶林生态亚区 | 1.31 | 1.31 | 1.45 | 1.26 | 1.45 | 0.88 | 1.28 | 0.21 |
川西南山地偏干性常绿阔叶林生态亚区 | 1.53 | 1.41 | 1.39 | 1.34 | 1.25 | 1.21 | 1.35 | 0.11 |
沙鲁里山南部亚高山半干旱、半湿润暗针叶林生态亚区 | 1.40 | 1.13 | 1.26 | 1.14 | 1.04 | 0.81 | 1.13 | 0.20 |
大雪山—念他翁山—高山灌丛—高山草甸生态亚 | 1.08 | 0.99 | 1.11 | 1.04 | 0.97 | 0.69 | 0.98 | 0.15 |
岷山—邛崃云—高山草甸—常绿阔叶林生态亚区 | 1.56 | 1.46 | 1.24 | 1.46 | 1.40 | 1.12 | 1.37 | 0.16 |
长江源高寒草甸草原生态亚区 | 0.93 | 0.95 | 1.06 | 1.17 | 0.89 | 0.87 | 0.98 | 0.11 |
黔桂喀斯特山地生态亚区 | 1990年 | 1995年 | 2000年 | 2005年 | 2010年 | 2015年 | 平均值 | 标准差 |
---|---|---|---|---|---|---|---|---|
黔中丘原盆地山原中山常绿阔叶林生态亚区 | 1.34 | 1.66 | 1.77 | 1.29 | 1.28 | 1.75 | 1.52 | 0.23 |
黔西北中山针阔混交林生态亚区 | 1.27 | 1.78 | 1.75 | 1.36 | 1.18 | 1.60 | 1.49 | 0.25 |
黔南山地盆谷常绿阔叶林生态亚区 | 1.67 | 1.73 | 1.94 | 1.42 | 1.61 | 2.00 | 1.73 | 0.22 |
乌蒙山山地云南松林—羊草草甸生态亚区 | 1.40 | 1.78 | 1.67 | 1.49 | 1.36 | 1.65 | 1.56 | 0.17 |
桂中北喀斯特常绿、落叶阔叶混交林生态亚区 | 1.86 | 1.62 | 1.88 | 1.68 | 1.77 | 2.33 | 1.86 | 0.26 |
桂东粤西丘陵山地湿润季风常绿阔叶林生态亚区 | 1.51 | 1.61 | 1.19 | 1.30 | 1.54 | 1.88 | 1.50 | 0.24 |
桂中喀斯特常绿、落叶阔叶混交林生态亚区 | 1.75 | 1.59 | 1.58 | 1.59 | 1.76 | 2.16 | 1.74 | 0.22 |
桂西南喀斯特北热带季雨林生态亚区 | 1.74 | 1.45 | 1.26 | 1.45 | 1.49 | 1.60 | 1.50 | 0.16 |
Tab. 5
Detection results of CIWL in Taihang Mountains region from 1990 to 2015
年份 | 海拔 | 坡度 | 地貌 类型 | 地形位 指数 | 土壤 类型 | 年均 气温 | 相对湿润度指数 | 太阳 辐射 | 土地利用类型 | 人口 | GDP |
---|---|---|---|---|---|---|---|---|---|---|---|
1990年 | 0.028 | 0.039 | 0.064 | 0.040 | 0.033 | 0.017 | 0.159 | 0.070 | 0.144 | 0.040 | 0.021 |
1995年 | 0.265 | 0.192 | 0.189 | 0.267 | 0.094 | 0.438 | 0.639 | 0.276 | 0.223 | 0.183 | 0.100 |
2000年 | 0.152 | 0.103 | 0.145 | 0.150 | 0.062 | 0.035 | 0.340 | 0.303 | 0.124 | 0.054 | 0.075 |
2005年 | 0.114 | 0.059 | 0.062 | 0.081 | 0.030 | 0.011 | 0.637 | 0.355 | 0.121 | 0.028 | 0.019 |
2010年 | 0.103 | 0.015 | 0.058 | 0.052 | 0.011 | 0.017 | 0.413 | 0.234 | 0.097 | 0.040 | 0.032 |
2015年 | 0.048 | 0.057 | 0.117 | 0.051 | 0.012 | 0.051 | 0.084 | 0.144 | 0.264 | 0.044 | 0.008 |
平均值 | 0.118 | 0.078 | 0.106 | 0.107 | 0.040 | 0.095 | 0.379 | 0.230 | 0.162 | 0.065 | 0.043 |
Tab. 6
Detection results of CIWL in Hengduan Mountains region from 1990 to 2015
年份 | 海拔 | 坡度 | 地貌 类型 | 地形位 指数 | 土壤 类型 | 年均 气温 | 相对湿润度 指数 | 太阳 辐射 | 土地利用 类型 | 人口 | GDP |
---|---|---|---|---|---|---|---|---|---|---|---|
1990年 | 0.078 | 0.092 | 0.153 | 0.030 | 0.070 | 0.040 | 0.717 | 0.533 | 0.064 | 0.094 | 0.004 |
1995年 | 0.086 | 0.081 | 0.053 | 0.019 | 0.068 | 0.030 | 0.831 | 0.487 | 0.048 | 0.066 | 0.002 |
2000年 | 0.042 | 0.066 | 0.147 | 0.043 | 0.094 | 0.044 | 0.638 | 0.379 | 0.061 | 0.077 | 0.007 |
2005年 | 0.030 | 0.056 | 0.100 | 0.057 | 0.065 | 0.077 | 0.536 | 0.491 | 0.075 | 0.048 | 0.022 |
2010年 | 0.071 | 0.126 | 0.127 | 0.079 | 0.087 | 0.070 | 0.806 | 0.555 | 0.046 | 0.048 | 0.036 |
2015年 | 0.136 | 0.021 | 0.148 | 0.011 | 0.076 | 0.098 | 0.659 | 0.483 | 0.072 | 0.162 | 0.068 |
平均值 | 0.074 | 0.074 | 0.121 | 0.040 | 0.077 | 0.060 | 0.698 | 0.488 | 0.061 | 0.083 | 0.023 |
Tab. 7
Detection results of CIWL in Guizhou-Guangxi karst mountains region from 1990 to 2015
年份 | 海拔 | 坡度 | 地貌 类型 | 地形位 指数 | 土壤 类型 | 年均 气温 | 相对湿润度 指数 | 太阳辐射 | 土地利用 类型 | 人口 | GDP |
---|---|---|---|---|---|---|---|---|---|---|---|
1990年 | 0.212 | 0.039 | 0.088 | 0.066 | 0.080 | 0.072 | 0.553 | 0.221 | 0.247 | 0.320 | 0.073 |
1995年 | 0.182 | 0.125 | 0.183 | 0.210 | 0.067 | 0.073 | 0.303 | 0.070 | 0.324 | 0.002 | 0.093 |
2000年 | 0.267 | 0.179 | 0.199 | 0.308 | 0.033 | 0.173 | 0.333 | 0.390 | 0.223 | 0.037 | 0.043 |
2005年 | 0.079 | 0.069 | 0.140 | 0.039 | 0.068 | 0.084 | 0.417 | 0.182 | 0.267 | 0.146 | 0.059 |
2010年 | 0.248 | 0.026 | 0.063 | 0.092 | 0.058 | 0.100 | 0.584 | 0.140 | 0.175 | 0.117 | 0.051 |
2015年 | 0.109 | 0.028 | 0.066 | 0.054 | 0.044 | 0.029 | 0.603 | 0.285 | 0.159 | 0.021 | 0.035 |
平均值 | 0.183 | 0.078 | 0.123 | 0.128 | 0.058 | 0.089 | 0.466 | 0.215 | 0.233 | 0.107 | 0.059 |
[1] | Feng Zhiming, Yang Yanzhao, You Zhen , et al. Research on the suitability of population distribution at the county level in China. Acta Geographica Sinica, 2014,69(6):723-737. |
[ 封志明, 杨艳昭, 游珍 , 等. 基于分县尺度的中国人口分布适宜度研究. 地理学报, 2014,69(6):723-737.] | |
[2] | Wen Qian, Meng Tianxing, Yun Yuhan . Temporal and spatial variation and match pattern of agricultural land and water resources in Henan province. Research of Soil and Water Conservation, 2017,24(5):233-239. |
[ 文倩, 孟天醒, 郧雨旱 . 河南省农业水土资源时空分异与匹配格局. 水土保持研究, 2017,24(5):233-239.] | |
[3] | Deng Wei, Tang Wei . General directions and countermeasures for urbanization development in mountain areas of China. Journal of Mountain Science, 2013,31(2):168-173. |
[ 邓伟, 唐伟 . 试论中国山区城镇化方向选择及对策. 山地学报, 2013,31(2):168-173.] | |
[4] | Deng Wei, Dai Erfu, Jia Yangwen , et al. Spatiotemporal coupling characteristics, effects and their regulation of water and soil elements in mountainous area. Journal of Mountain Science, 2015,33(5):513-520. |
[ 邓伟, 戴尔阜, 贾仰文 , 等. 山地水土要素时空耦合特征、效应及其调控. 山地学报, 2015,33(5):513-520.] | |
[5] | Liu Yansui, Gan Hong, Zhang Fugang . Analysis of the matching patterns of land and water resources in Northeast China. Acta Geographica Sinica, 2006,61(8):847-854. |
[ 刘彦随, 甘红, 张富刚 . 中国东北地区农业水土资源匹配格局. 地理学报, 2006,61(8):847-854.] | |
[6] | Zhang Zhanyu, Si Han, Feng Baoping , et al. An optimal model for agriculture water and soil resources configuration in water shortage irrigation area. Journal of Hydraulic Engineering, 2014,45(4):403-409. |
[ 张展羽, 司涵, 冯宝平 , 等. 缺水灌区农业水土资源优化配置模型. 水利学报, 2014,45(4):403-409.] | |
[7] | Dong Wen, Yang Yu, Zhang Yufang . Coupling effect and spatiotemporal differentiation between oasis city development and water-land resources. Resources Science, 2013,35(7):1355-1362. |
[ 董雯, 杨宇, 张豫芳 . 绿洲城镇发展与水土资源开发的耦合效应及其时空分异. 资源科学, 2013,35(7):1355-1362.] | |
[8] | Ma Libang, Tian Yaya, Guo Xiaodong , et al. Spatial-temporal change of rural settlements and its spatial coupling relationship with water and soil resources based on grid in the Hexi Oasis. Journal of Natural Resources, 2018,33(5):775-787. |
[ 马利邦, 田亚亚, 郭晓东 , 等. 基于格网的河西绿洲乡村聚落时空演变及其与水土资源的空间耦合关系. 自然资源学报, 2018,33(5):775-787.] | |
[9] | Zhao Rongqin, Li Zhiping, Han Yuping , et al. The coupling interaction mechanism of regional water-land-energy-carbon system. Acta Geographica Sinica, 2016,71(9):1613-1628. |
[ 赵荣钦, 李志萍, 韩宇平 , 等. 区域“水—土—能—碳”耦合作用机制分析. 地理学报, 2016,71(9):1613-1628.] | |
[10] | Rodriguez R G, Scanlon B R, King C W , et al. Biofuel-water-land nexus in the last agricultural frontier region of the Brazilian Cerrado. Applied Energy, 2018,231:1330-1345. |
[11] | Ibarrola-Rivas M J, Granados-Ramírez R, Nonhebel S . Is the available cropland and water enough for food demand? A global perspective of the land-water-food nexus. Advances in Water Resources, 2017,110:476-483. |
[12] | Zhao R, Liu Y, Tian M , et al. Impacts of water and land resources exploitation on agricultural carbon emissions: The water-land-energy-carbon nexus. Land Use Policy, 2018,72:480-492. |
[13] | Jiang Qiuxiang, Zhou Zhimei, Wang Zilong , et al. Risk assessment and optimization of water resources shortage based on water and land resources coupling. Transactions of the Chinese Society of Agricultural Engineering, 2017,33(12):136-143. |
[ 姜秋香, 周智美, 王子龙 , 等. 基于水土资源耦合的水资源短缺风险评价及优化. 农业工程学报, 2017,33(12):136-143.] | |
[14] | Wang Lixia, Ren Zhiyuan, Ren Zhaoxia , et al. Integrated allocation of water and land resources based on GLP model in Yanhe watershed. Transactions of the Chinese Society of Agricultural Engineering, 2011,27(4):48-53. |
[ 王丽霞, 任志远, 任朝霞 , 等. 陕北延河流域基于GLP模型的流域水土资源综合配置. 农业工程学报, 2011,27(4):48-53.] | |
[15] | Das B, Singh A, Panda S N , et al. Optimal land and water resources allocation policies for sustainable irrigated agriculture. Land Use Policy, 2015,42(42):527-537. |
[16] | Mosleh Z, Salehi M H, Fasakhodi A A , et al. Sustainable allocation of agricultural lands and water resources using suitability analysis and mathematical multi-objective programming. Geoderma, 2017,303:52-59. |
[17] | Wang Lucang, Gao Jing . Spatial coupling relationship between settlement and land and water resources based on irrigation scale: A case study of Zhangye city. Journal of Natural Resources, 2014,29(11):1888-1901. |
[ 王录仓, 高静 . 基于灌区尺度的聚落与水土资源空间耦合关系研究: 以张掖绿洲为例. 自然资源学报, 2014,29(11):1888-1901.] | |
[18] | Shi Peili, Geng Shoubao . Effects of soil and water interaction and optimal allocation of land use in mountainous areas. Chinese Journal of Nature, 2018,40(1):25-32. |
[ 石培礼, 耿守保 . 山地水土要素耦合效应及土地利用的优化配置. 自然杂志, 2018,40(1):25-32.] | |
[19] | Liu Bintao, Zhang Su, Xiong Donghong , et al. The spatiotemporal distribution and coupled characteris in the Hengduan Mountains, China. Chinese Journal of Nature, 2018,40(1):55-63. |
[ 刘斌涛, 张素, 熊东红 , 等. 横断山地水土要素时空分布格局与耦合特征. 自然杂志, 2018,40(1):55-63.] | |
[20] | 中华人民共和国生态环境部. 关于印发《生态保护红线划定指南》的通知. , 2017. |
[21] | Wang Bing, Guo Quanshui, Yan Hong , et al. The potential impact of climate change on the rainfall interception of forest in China. Scientia Silvae Sinicae, 1997,33(4):299-306. |
[ 王兵, 郭泉水, 阎洪 , 等. 气候变化对我国森林降水截留规律的可能影响. 林业科学, 1997,33(4):299-306.] | |
[22] | Zhang Yuan, Zhang Zhifeng . Minimum ecological water requirement of forestland in Huang-huai-hai area. Journal of Soil and Water Conservation, 2002,16(2):72-75. |
[ 张远, 杨志峰 . 黄淮海地区林地最小生态需水量研究. 水土保持学报, 2002,16(2):72-75.] | |
[23] |
Li Shuangshuang, Yang Shaini, Liu Xianfeng . Spatiotemporal variability of rice water deficiency during 1960-2013 and its influencing factors in southwestern China. Acta Ecologica Sinica, 2016,36(18):5798-5808.
doi: 10.5846/stxb201503290603 |
[ 李双双, 杨赛霓, 刘宪锋 . 西南地区水稻水分亏缺率时空变化特征及其影响因素. 生态学报, 2016,36(18):5798-5808.]
doi: 10.5846/stxb201503290603 |
|
[24] | Wang Xiaoying, Liang Wenju, Wen Dazhong . Analysis of paddy field evapotranspiration in North China and calculation of crop coefficient. Chinese Journal of Applied Ecology, 2005,16(1):69-72. |
[ 王笑影, 梁文举, 闻大中 . 北方稻田蒸散需水分析及其作物系数确定. 应用生态学报, 2005,16(1):69-72.] | |
[25] | Pang Yanmei, Chen Chao, Pan Xuebiao . Variation characteristics of maize effective precipitation and water requirement in Sichuan basin during 1961-2010. Transactions of the Chinese Society of Agricultural Engineering, 2015,31(Supp.1):133-141. |
[ 庞艳梅, 陈超, 潘学标 . 1961-2010年四川盆地玉米有效降水和需水量的变化特征. 农业工程学报, 2015,31(s1):133-141.] | |
[26] | Luo Hongying, Cui Yuanlai . The computation and analysis of highland barley crop coefficient in the main agricultural area of Tibet. Journal of Irrigation and Drainage, 2014,33(1):116-119. |
[ 罗红英, 崔远来 . 西藏主要农区青稞作物系数的计算分析. 灌溉排水学报, 2014,33(1):116-119.] | |
[27] | Huang Kai . Water demand of sugarcane and technologies of drip irrigation on hill slopes in Guangxi, China[D]. Nanning: Guangxi University, 2016. |
[ 黄凯 . 广西丘陵坡地糖料蔗耗水规律及滴灌研究[D]. 南宁: 广西大学, 2016.] | |
[28] | Gao Xiaoli, Xu Junzeng, Yang Shihong , et al. Water requirement pattern and crop coefficient of main crops in Guizhou Province. China Rural Water and Hydropower, 2015(1):11-14. |
[ 高晓丽, 徐俊增, 杨士红 , 等. 贵州地区主要作物需水规律与作物系数的研究. 中国农村水利水电, 2015(1):11-14.] | |
[29] |
Cao Yongqiang, Zhu Mingming, Li Weiwei . Effective precipitation and water requirements of crops in Hebei Province over 60 years. Acta Ecologica Sinica, 2018,38(2):560-570.
doi: 10.5846/stxb201701100079 |
[ 曹永强, 朱明明, 李维佳 . 河北省典型区主要作物有效降雨量和需水量特征. 生态学报, 2018,38(2):560-570.]
doi: 10.5846/stxb201701100079 |
|
[30] | Zhou Yingping, Hu Zhenghua, Cui Hailing , et al. Effect of climate change on main crop water requirements in Henan province during 1971-2010. Journal of Nanjing University of Information Science and Technology: Natural Science Edition, 2013,5(6):515-521. |
[ 周迎平, 胡正华, 崔海羚 , 等. 1971-2010年气候变化对河南省主要作物需水量的影响. 南京信息工程大学学报(自然科学版), 2013,5(6):515-521.] | |
[31] |
Wang Gailing. Wang Qingchu, Shi Shengxin . Vegetation's ecological water requirement in Yongding River watershed in Shanxi province. Journal of Natural Resources, 2013,28(10):1743-1753.
doi: 10.11849/zrzyxb.2013.10.009 |
[ 王改玲, 王青杵, 石生新 . 山西省永定河流域林草植被生态需水研究. 自然资源学报, 2013,28(10):1743-1753.]
doi: 10.11849/zrzyxb.2013.10.009 |
|
[32] | Wang Jinfeng, Xu Chengdong . Geodetector: Principle and prospective. Acta Geographica Sinica, 2017,72(1):116-134. |
[ 王劲峰, 徐成东 . 地理探测器: 原理与展望. 地理学报, 2017,72(1):116-134.] | |
[33] | Xu Fei, Jia Yangwen, Niu Cunwen , et al. Variation character of annual, seasonal and monthly temperature and precipitation. Mountain Research, 2018,36(2):171-183. |
[ 徐飞, 贾仰文, 牛存稳 , 等. 横断山区气温和降水年季月变化特征. 山地学报, 2018,36(2):171-183.] | |
[34] | Zhang Rongzu, Zheng Du, Yang Qinye , et al. Physical Geography of Hengduan Mountains. Beijing: Science Press, 1996. |
[ 张荣祖, 郑度, 杨勤业 , 等. 横断山区自然地理. 北京: 科学出版社, 1996.] | |
[35] | Wang Ying, Cao Mingkui, Tao Bo , et al. The characteristics of spatio-temporal patterns in precipitation in China under the background of global climate change. Geographical Research, 2006,25(6):1031-1040. |
[ 王英, 曹明奎, 陶波 , 等. 全球气候变化背景下中国降水量空间格局的变化特征. 地理研究, 2006,25(6):1031-1040.] | |
[36] | Zha Liangsong . A study on spatilal and temporal variation of solar radiation in China. Scientia Geographica Sinica, 1996,16(3):232-237. |
[ 查良松 . 我国地面太阳辐射量的时空变化研究. 地理科学, 1996,16(3):232-237.] | |
[37] | National Academy of Sciences, United States. Understanding the Changing Planet Strategic: Directions for the Geographical Sciences. Liu Yi, Liu Weidong, et al. trans. Beijing: Science Press, 2011: 46-55. |
[ 美国国家科学院研究理事会. 刘毅, 刘卫东, 等, 译. 理解正在变化的星球: 地理科学的战略方向. 北京: 科学出版社, 2011: 46-55.] | |
[38] |
Fu Bojie, Leng Shuying, Song Changqing . The characteristics and tasks of geography in the new era. Scientia Geographica Sinica, 2015,35(8):939-945.
doi: 10.1016/S0168-9002(97)00311-2 |
[ 傅伯杰, 冷疏影, 宋长青 . 新时期地理学的特征与任务. 地理科学, 2015,35(8):939-945.]
doi: 10.1016/S0168-9002(97)00311-2 |
[1] | HU Pan, CHEN Bo, SHI Peijun. Spatiotemporal patterns and influencing factors of rainstorm-induced flood disasters in China [J]. Acta Geographica Sinica, 2021, 76(5): 1148-1162. |
[2] | ZHOU Yang, LI Xunhuan, TONG Chunyang, HUANG Han. The geographical pattern and differentiational mechanism of rural poverty in China [J]. Acta Geographica Sinica, 2021, 76(4): 903-920. |
[3] | PAN Jinghu, FENG Yaya. Spatial distribution of extreme poverty and mechanism of poverty differentiation in rural China based on spatial scan statistics and geographical detector [J]. Acta Geographica Sinica, 2020, 75(4): 769-788. |
[4] | LIU Min, HAO Wei. Spatial distribution and its influencing factors of national A-level tourist attractions in Shanxi Province [J]. Acta Geographica Sinica, 2020, 75(4): 878-888. |
[5] | LU Daming, YANG Xinjun, SHI Yuzhong, WANG Ziqiao. Rural regime shifts and transformation development on the Loess Plateau [J]. Acta Geographica Sinica, 2020, 75(2): 348-364. |
[6] | LI Hanqi, JIA Peng, FEI Teng. Geographical association between dietary tastes and chronic diseases in China:An exploratory study using crowdsourcing data mining techniques [J]. Acta Geographica Sinica, 2019, 74(8): 1637-1649. |
[7] | WEN Qi,SHI Linna,MA Caihong,WANG Yongsheng. Spatial heterogeneity of multidimensional poverty at the village level: Loess Plateau [J]. Acta Geographica Sinica, 2018, 73(10): 1850-1864. |
[8] | Jinfeng WANG, Chengdong XU. Geodetector: Principle and prospective [J]. Acta Geographica Sinica, 2017, 72(1): 116-134. |
[9] | Yuxiang DONG, Qian XU, Ren YANG, Chengdong XU, Yuying WANG. Delineation of the northern border of the tropical zone ofChina's mainland using Geodetector [J]. Acta Geographica Sinica, 2017, 72(1): 135-147. |
[10] | Jiaming LI, Dadao LU, Chengdong XU, Yang LI, Mingxing CHEN. Spatial heterogeneity and its changes of population on the two sides of Hu Line [J]. Acta Geographica Sinica, 2017, 72(1): 148-160. |
[11] | Jun YANG, Yuting GE, Jianchao XI, Quansheng GE, Xueming LI. Spatial-temporal island tourismification effects differentiation of Changhai county [J]. Acta Geographica Sinica, 2016, 71(6): 1074-1094. |
[12] | LEI Sai-Jia, ZHANG Xiao-Lei, LEI Jun. Spatial-temporal Differentiation of the Systemic Harmonious Degree between Cities and Industry along the Railway Lines in Xinjiang [J]. Acta Geographica Sinica, 2009, 64(8): 911-923. |