Acta Geographica Sinica ›› 2019, Vol. 74 ›› Issue (9): 1878-1889.doi: 10.11821/dlxb201909013
• Land Use and Ecological Environment • Previous Articles Next Articles
LU Lu1,2,DAI Erfu2(),CHENG Qianding3,WU Zhenzhen3
Received:
2018-05-31
Revised:
2019-07-31
Online:
2019-09-25
Published:
2019-09-25
Contact:
DAI Erfu
E-mail:daief@igsnrr.ac.cn
Supported by:
LU Lu, DAI Erfu, CHENG Qianding, WU Zhenzhen. The sources and fate of nitrogen in groundwater under different land use types: Stable isotope combined with a hydrochemical approach[J].Acta Geographica Sinica, 2019, 74(9): 1878-1889.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 3
The statistics on water chemicals in groundwater (mg/L)
统计量 | 极小值 | 极大值 | 均值 | 标准差 |
---|---|---|---|---|
Na+ | 1.69 | 101.83 | 30.75 | 26.56 |
K+ | 0.31 | 10.2 | 1.74 | 2.45 |
Mg2+ | 2 | 40.56 | 15.97 | 10.47 |
Ca2+ | 6.2 | 51.54 | 24.73 | 12.38 |
Cl- | 0.11 | 58.28 | 21.56 | 23.34 |
SO42- | 0.04 | 52.48 | 12.29 | 14.39 |
HCO3- | 7.86 | 75.72 | 49.67 | 22.18 |
Fe2+ | Nulla | 6.69 | 1.3 | 2.42 |
Mn2+ | Nulla | 1.44 | 0.3 | 0.44 |
Tab. 4
The component matrix and rotated component matrix of PCA analysis for groundwater chemicals
变量 | 成分矩阵 | 旋转成分矩阵a | ||
---|---|---|---|---|
主成分1 | 主成分2 | 主成分1 | 主成分2 | |
SO42- | 0.907 | 0.200 | 0.931 | -0.099 |
Mg2+ | 0.873 | 0.338 | 0.898 | -0.237 |
NO3- | 0.861 | -0.062 | 0.861 | -0.189 |
Cl- | 0.853 | -0.126 | 0.844 | 0.031 |
Na+ | 0.852 | 0.226 | 0.770 | -0.076 |
K+ | 0.737 | 0.414 | 0.738 | -0.449 |
Ca2+ | 0.719 | 0.285 | 0.701 | -0.502 |
HCO3- | 0.102 | 0.782 | -0.257 | 0.861 |
NH4+ | -0.578 | 0.664 | -0.211 | 0.855 |
Fe2+ | -0.622 | 0.648 | -0.212 | 0.760 |
Mn2+ | -0.536 | 0.579 | 0.449 | 0.649 |
累积贡献率(%) | 53.275 | 74.056 | 46.481 | 74.056 |
[1] |
Jiang Y, Yuan D, Xie S , et al. Groundwater quality and land use change in a typical karst agricultural region: A case study of Xiao jiang watershed, Yunnan. Journal of Geographical Sciences, 2006,16(4):405-414.
doi: 10.1007/s11442-006-0403-9 |
[2] | Song K S, Liu D W, Wang Z M , et al. Land use change in Sanjiang Plain and its driving forces analysis since 1954. Acta Geographica Sinica, 2008,63(1):93-104. |
[ 宋开山, 刘殿伟, 王宗明 , 等. 1954年以来三江平原土地利用变化及驱动力. 地理学报, 2008,63(1):93-104.] | |
[3] | Dan W, Wei H, Shuwen Z , et al. Processes and prediction of land use/land cover changes (LUCC) driven by farm construction: The case of Naoli River Basin in Sanjiang Plain. Environmental earth sciences, 2015,73(8):4841-4851. |
[4] | Cao Y, Tang C, Song X , et al. Characteristics of nitrate in major rivers and aquifers of the Sanjiang Plain, China. Journal of Environmental Monitoring, 2012,14(10):2624-2633. |
[5] | Lu L, Cheng H G, Pu X , et al. Identifying organic matter sources using isotopic ratios in a watershed impacted by intensive agricultural activities in Northeast China . Agriculture, Ecosystems & Environment, 2016,222:48-59. |
[6] | Pan Xiaofeng, Yan Baixing, Zhu Hui , et al. Iron species and output flux in the agricultural irrigation drainage system in the Sanjiang Plain. Acta Scientiae Circumstantiae, 2010,30(5):1087-1092. |
[ 潘晓峰, 阎百兴, 祝惠 , 等. 三江平原水田灌溉-排水过程中铁形态变化及输出贡献. 环境科学学报, 2010,30(5):1087-1092.] | |
[7] | Zou Yuanchun, Yu Xiaofei, Huo Lili , et al. Waterborne iron migration by groundwater irrigation pumping in a typical irrigation district of Sanjiang Plain. Environmental Science, 2012,33(4):1209-1215. |
[ 邹元春, 于晓菲, 霍莉莉 , 等. 三江平原典型灌区井灌地下水中铁的随水迁移特征. 环境科学, 2012,33(4):1209-1215.] | |
[8] | Li Qiao, Zhou Jinglong, Jia Ruiliang . Research status and prospect on agricultural non-point source pollution of groundwater. Groundwater, 2011,33(2):73-76. |
[ 李巧, 周金龙, 贾瑞亮 . 地下水农业面源污染研究现状与展望. 地下水, 2011,33(2):73-76.] | |
[9] | Balestrini R, Sacchi E, Tidili D , et al. Factors affecting agricultural nitrogen removal in riparian strips: Examples from groundwater-dependent ecosystems of the Po Valley (Northern Italy). Agriculture, Ecosystems & Environment, 2016,221:132-144. |
[10] | Lawniczak A E, Zbierska J, Nowak B , et al. Impact of agriculture and land use on nitrate contamination in groundwater and running waters in central-west Poland. Environmental monitoring and assessment, 2016,188(3):1-10. |
[11] | Matiatos I . Nitrate source identification in groundwater of multiple land-use areas by combining isotopes and multivariate statistical analysis: A case study of Asopos Basin (Central Greece). Science of the Total Environment, 2016,541:802-814. |
[12] | Wang S, Zheng W, Currell M , et al. Relationship between land-use and sources and fate of nitrate in groundwater in a typical recharge area of the North China Plain. Science of the Total Environment, 2017,609:607-620. |
[13] | Kendall C, Elliott E M, Wankel S D . Tracing anthropogenic inputs of nitrogen to ecosystems//Michener R H, Lajtha K. Stable Isotopes in Ecology and Environmental Science. Malden: Blackwell, 2007: 375-449. |
[14] |
Xue D, Botte J, De Baets B , et al. Present limitations and future prospects of stable isotope methods for nitrate source identification in surface-and groundwater. Water Research, 2009,43(5):1159-1170.
doi: 10.1016/j.watres.2008.12.048 |
[15] | Wang X L, Li J S, Li S M , et al. A study on removing nitrogen from paddy field rainfall runoff by an ecological ditch-zeolite barrier system. Environmental Science and Pollution Research, 2017,24(35):27090-27103. |
[16] |
Cheong J, Hamm S, Lee J , et al. Groundwater nitrate contamination and risk assessment in an agricultural area, South Korea. Environmental Earth Sciences, 2012,66(4):1127-1136.
doi: 10.1007/s12665-011-1320-5 |
[17] | Amano H, Nakagawa K, Berndtsson R . Groundwater geochemistry of a nitrate-contaminated agricultural site. Environmental Earth Sciences, 2016,75(15):1145. |
[18] | Mao Xumei, Luo Zejiao, Li Yongyong , et al. Bacterial denitrification: A new method for nitrogen isotopic analysis of nitrate in groundwater. Acta Geoscientica Sinica, 2005,26(B09):44-47. |
[ 毛绪美, 罗泽娇, 李永勇 , 等. 地下水硝酸盐氮同位素分析最新方法: 细菌反硝化法. 地球学报, 2005,26(B09):44-47.] | |
[19] | Hosono T, Tokunaga T, Kagabu M , et al. The use of δ 15N and δ 18O tracers with an understanding of groundwater flow dynamics for evaluating the origins and attenuation mechanisms of nitrate pollution . Water Research, 2013,47(8):2661-2675. |
[20] | Townsend M A . Use of the nitrogen-15 isotope natural abundance method and chemical ratios to determine sources of potential nitrate contamination of ground water, northeastern kansas. Geological Society of America Abstracts with Programs, 2009,41(4):67. |
[21] | Du Y, Ma T, Deng Y , et al. Sources and fate of high levels of ammonium in surface water and shallow groundwater of the Jianghan Plain, Central China. Environmental Science: Processes & Impacts, 2017,19(2):161-172. |
[22] | Liang T, Zhang X, Zhang S . Nitrogen elements transferring processes and fluxes under different land use in West Tiaoxi Catchment. Acta Geographica Sinica, 2002,57(4):389-396. |
[ 梁涛, 张秀梅, 章申 , 等. 西苕溪流域不同土地类型下氮元素输移过程. 地理学报, 2002,57(4):389-396.] | |
[23] | Xu Zhiwei, Zhang Xinyu, Yu Guirui , et al. Review of dual stable isotope technique for nitrate source identification in surface- and ground water in China. Environmental Science, 2014,35(8):3230-3238. |
[ 徐志伟, 张心昱, 于贵瑞 , 等. 中国水体硝酸盐氮氧双稳定同位素溯源研究进展. 环境科学, 2014,35(8):3230-3238.] | |
[24] | Lu L, Cheng H G, Pu X , et al. Nitrate behaviors and source apportionment in an aquatic system from a watershed with intensive agricultural activities. Environmental Science: Processes & Impacts, 2015,17(1):131-144. |
[25] | Ding J T, Xi B, Gao R , et al. Identifying diffused nitrate sources in a stream in an agricultural field using a dual isotopic approach. Science of the Total Environment, 2014,484(24):10-18. |
[26] | Barnes R T, Raymond P A . Land-use controls on sources and processing of nitrate in small watersheds: Insights from dual isotopic analysis. Ecological Applications, 2010,20(7):1961-1978. |
[27] |
Nestler A, Berglund M, Accoe F , et al. Isotopes for improved management of nitrate pollution in aqueous resources: review of surface water field studies. Environmental Science and Pollution Research, 2011,18(4):519-533.
doi: 10.1007/s11356-010-0422-z |
[28] |
Minet E, Coxon C E, Goodhue R , et al. Evaluating the utility of δ 15N and δ 18O isotope abundance analyses to identify nitrate sources: A soil zone study . Water Research, 2012,46(12):3723-3736.
doi: 10.1016/j.watres.2012.03.004 |
[29] | Kim H, Kaown D, Mayer B , et al. Identifying the sources of nitrate contamination of groundwater in an agricultural area (Haean Basin, Korea) using isotope and microbial community analyses. Science of the Total Environment, 2015,533:566-575. |
[30] | Yin Juan, Wang Nanjiang, Mian Shaoping . Experiment study of the nitrogen transportation and transformation regularity in the rice field of Yin nan Irrigation District. Journal of Irrigation and Drainage, 2005,24(3):5-7. |
[ 尹娟, 王南江, 勉韶平 . 稻田土壤中氮素运移转化规律的试验研究. 灌溉排水学报, 2005,24(3):5-7.] | |
[31] | Song X, Wang S, Wang Y , et al. Addition of Fe 2+ increase nitrate removal in vertical subsurface flow constructed wetlands . Ecological Engineering, 2016,91:487-494. |
[1] | ZHANG Yongqiang, KONG Dongdong, ZHANG Xuanze, TIAN Jing, LI Congcong. Impacts of vegetation changes on global evapotranspiration in the period 2003-2017 [J]. Acta Geographica Sinica, 2021, 76(3): 584-594. |
[2] | LONG Hualou, CHEN Kunqiu. Urban-rural integrated development and land use transitions: A perspective of land system science [J]. Acta Geographica Sinica, 2021, 76(2): 295-309. |
[3] | PENG Shiyao, CHEN Shaokuan, XU Qi, NIU Jiaqi. Spatial characteristics of land use based on POI and urban rail transit passenger flow [J]. Acta Geographica Sinica, 2021, 76(2): 459-470. |
[4] | LIAO Liuwen, GAO Xiaolu, LONG Hualou, TANG Lisha, CHEN Kunqiu, MA Enpu. A comparative study of farmland use morphology in plain and mountainous areas based on farmers' land use efficiency [J]. Acta Geographica Sinica, 2021, 76(2): 471-486. |
[5] | YANG Weishi, DAI Erfu, ZHENG Du, DONG Yuxiang, YIN Le, MA Liang, WANG Junxiong, PAN Lihu, QIN Shipeng. Spatial simulation of "Grain to Green Program" implementation in a typical region based on agent-based model [J]. Acta Geographica Sinica, 2020, 75(9): 1983-1995. |
[6] | QU Shijin, HU Shougeng, LI Quanfeng. Stages and spatial patterns of urban built-up land transition in China [J]. Acta Geographica Sinica, 2020, 75(7): 1539-1553. |
[7] | SONG Xiaoqing, SHEN Yajing, WANG Xiong, LI Xinyi. Vulnerability to biological disasters: A novel field of cultivated land use transition research [J]. Acta Geographica Sinica, 2020, 75(11): 2362-2379. |
[8] | SUN Yizhong, YANG Jing, SONG Shuying, ZHU Jie, DAI Junjie. Modeling of multilevel vector cellular automata and its simulation of land use change [J]. Acta Geographica Sinica, 2020, 75(10): 2164-2179. |
[9] | JU Hongrun, ZUO Lijun, ZHANG Zengxiang, ZHAO Xiaoli, WANG Xiao, WEN Qingke, LIU Fang, XU Jinyong, LIU Bin, YI Ling, HU Shunguang, SUN Feifei, TANG Zhanzhong. Methods research on describing the spatial pattern of land use types in China [J]. Acta Geographica Sinica, 2020, 75(1): 143-159. |
[10] | SU Weizhong,RU Jingjing,YANG Guishan. Modelling stormwater management based on infiltration capacity of land use in the watershed scale [J]. Acta Geographica Sinica, 2019, 74(5): 948-961. |
[11] | ZHAO Pengjun,LYU Di. Characteristics of land use structure in small towns of China:Empirical evidences from 121 townships [J]. Acta Geographica Sinica, 2019, 74(5): 1011-1024. |
[12] | SONG Xiaoqing,LI Xinyi. Theoretical explanation and case study of regional cultivated land use function transition [J]. Acta Geographica Sinica, 2019, 74(5): 992-1010. |
[13] | Enpu MA, Jianming CAI, Jing LIN, Yan HAN, Liuwen LIAO, Wei HAN. Explanation of land use/cover change from the perspective of tele-coupling [J]. Acta Geographica Sinica, 2019, 74(3): 421-431. |
[14] | Wenbo ZHU, Jingjing ZHANG, Yaoping CUI, Hui ZHENG, Lianqi ZHU. Assessment of territorial ecosystem carbon storage based on land use change scenario: A case study in Qihe River Basin [J]. Acta Geographica Sinica, 2019, 74(3): 446-459. |
[15] | LONG Hualou, GE Dazhuan, WANG Jieyong. Progress and prospects of the coupling research on land use transitions and rural transformation development [J]. Acta Geographica Sinica, 2019, 74(12): 2546-2559. |