Acta Geographica Sinica ›› 2019, Vol. 74 ›› Issue (7): 1392-1408.doi: 10.11821/dlxb201907009
• Climate Change and Surface Processes • Previous Articles Next Articles
ZHAO Changsen1,2,PAN Xu1,3,YANG Shengtian1,2(),LIU Changming1,CHEN Xin4,ZHANG Hanming5,PAN Tianli2
Received:
2018-05-17
Revised:
2019-03-10
Online:
2019-07-25
Published:
2019-07-23
Contact:
YANG Shengtian
E-mail:yangshengtian@bnu.edu.cn
Supported by:
ZHAO Changsen,PAN Xu,YANG Shengtian,LIU Changming,CHEN Xin,ZHANG Hanming,PAN Tianli. Measuring streamflow with low-altitude UAV imagery[J].Acta Geographica Sinica, 2019, 74(7): 1392-1408.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Ground measured data
流域水系 | 站点名称 | 资料类型 | 资料获取时间 |
---|---|---|---|
黄河流域 | 顾小庄浮桥(S6) | 流量(3组)、大断面(3组) | 201509-201611 |
陈屯桥(S4) | 流量(1组)、大断面(1组) | 201501 | |
宅科(S2) | 流量(2组)、大断面(2组) | 201509-201609 | |
并渡口(上)(S1-1) | 流量(2组)、大断面(2组) | 201609-201611 | |
并渡口(中)(S1-2) | 流量(3组)、大断面(3组) | 201509-201611 | |
并渡口(下)(S1-3) | 流量(3组)、大断面(3组) | 201510-201611 | |
北大沙河入黄河口(上)(S1-1) | 流量(2组)、大断面(2组) | 201609 | |
北大沙河入黄河口(中)(S1-2) | 流量(1组)、大断面(1组) | 201609 | |
北大沙河入黄河口(下)(S1-3) | 流量(1组)、大断面(1组) | 201609 | |
淮河流域小清河 | 巨野河(上)(S11-1) | 流量(2组)、大断面(2组) | 201609-201611 |
巨野河(中)(S11-2) | 流量(1组)、大断面(1组) | 201611 | |
巨野河(下)(S11-3) | 流量(2组)、大断面(2组) | 201609-201611 | |
岔河(S14) | 流量(198组)、大断面(3组) | 201101-201312 | |
石村(S15) | 流量(21组)、大断面(1组) | 201301-201312 | |
五龙堂(S7) | 流量(21组)、大断面(2组) | 201606-201708 | |
大辛庄(S12) | 流量(1组)、大断面(1组) | 201609 | |
鸭旺口(S13) | 流量(1组)、大断面(2组) | 201609 | |
垛庄水库(S3) | 流量(1组)、大断面(3组) | 201609 | |
石河(S10) | 流量(1组)、大断面(4组) | 201609 | |
龙脊河(S9) | 流量(1组)、大断面(5组) | 201609 | |
海河流域徒骇马颊河 | 张公南邻(上)(S8-1) | 流量(1组)、大断面(6组) | 201609 |
张公南邻(中)(S8-2) | 流量(1组)、大断面(7组) | 201609 | |
张公南邻(下)(S8-3) | 流量(1组)、大断面(8组) | 201609 |
Tab. 3
Roughness (n) for natural rivers
河槽类型及特征 | 糙率 | ||
---|---|---|---|
最小值 | 正常值 | 最大值 | |
一、小河(洪水位的水面宽度小于30 m) | |||
1.平原河流 | |||
(1) 清洁、顺直、无浅滩深潭 | 0.025 | 0.030 | 0.033 |
(2) 同上,但石块多、杂草多 | 0.030 | 0.035 | 0.040 |
(3) 清洁、弯曲、有浅滩和深谭 | 0.033 | 0.040 | 0.045 |
(4) 同上,但有石块杂草 | 0.035 | 0.045 | 0.050 |
(5) 同上,水深较浅,河底坡度多变,平面上回流区较多 | 0.040 | 0.048 | 0.055 |
(6) 同(4),但石块多 | 0.045 | 0.050 | 0.060 |
(7) 多杂草、有深潭、流动缓慢的河流 | 0.050 | 0.070 | 0.080 |
(8) 多杂草的河段、深潭多或林木滩地上过洪 | 0.075 | 0.100 | 0.150 |
2.山区河流(河槽无草树、河岸较陡,岸坡树丛过洪时淹没) | |||
(1) 河底为砾石、卵石、间有孤石 | 0.030 | 0.040 | 0.050 |
(2) 河底为卵石和大孤石 | 0.040 | 0.050 | 0.070 |
二、大河(洪水位的水面宽度大于30 m) | |||
相应于上述小河的各种情况,由于河岸阻力相对较小,n值略小 | |||
1.断面比较规则整齐,无孤石或林木 | 0.025 | 0.060 | |
2.断面不规则不整齐,床面粗糙 | 0.035 | 0.100 | |
三、洪水时期滩地漫流 | |||
1.草地、无树丛 | |||
(1) 短草 | 0.025 | 0.030 | 0.035 |
(2) 长草 | 0.030 | 0.035 | 0.050 |
2.耕地 | |||
(1) 未熟庄稼 | 0.020 | 0.030 | 0.040 |
(2) 已熟成行庄稼 | 0.025 | 0.035 | 0.045 |
(3) 已熟密植庄稼 | 0.030 | 0.040 | 0.050 |
3.矮树丛 | |||
(1) 稀疏、多杂草 | 0.035 | 0.050 | 0.070 |
(2) 不密、夏季情况 | 0.040 | 0.060 | 0.080 |
(3) 茂密、夏季情况 | 0.070 | 0.100 | 0.160 |
4.树木 | |||
(1) 平整田地、干树无枝 | 0.030 | 0.040 | 0.050 |
(2) 平整田地、干树多新枝 | 0.050 | 0.060 | 0.080 |
(3) 密林、树下植物少、洪水位在枝下 | 0.080 | 0.100 | 0.120 |
(4) 密林、树下植物少、洪水位淹没树枝 | 0.100 | 0.120 | 0.160 |
Tab. 4
Hydraulic parameters
流域 水系 | 站点 名称 | 糙率n | 水面比降 J(‰) | 水面宽 W0(m) | 资料获取 时间 | 无人机 飞行次数 |
---|---|---|---|---|---|---|
黄河流域 | 顾小庄浮桥 | 0.08 | 7.8~8.8 | 117~261 | 201509-201611 | 3 |
陈屯桥 | 0.08 | 0.58 | 24 | 201501 | 1 | |
宅科 | 0.08 | 0.2~0.9 | 6.2~43.1 | 201509-201609 | 2 | |
并渡口(上) | 0.08 | 10~120 | 6.2~53 | 201609-201611 | 2 | |
并渡口(中) | 0.08 | 4~25 | 9.2~16.4 | 201509-201611 | 3 | |
并渡口(下) | 0.08 | 13~28 | 4.1~28.6 | 201510-201611 | 3 | |
北大沙河入黄河口(上) | 0.05~0.08 | 0.7~1.6 | 11 | 201609 | 2 | |
北大沙河入黄河口(中) | 0.05 | 0.7 | 12.6 | 201609 | 1 | |
北大沙河入黄河口(下) | 0.05 | 2.4 | 4.2 | 201609 | 1 | |
淮河流域小清河 | 巨野河(上) | 0.08 | 1.5~7.8 | 4.4~5.1 | 201609-201611 | 2 |
巨野河(中) | 0.08 | 4.8 | 3.2 | 201611 | 1 | |
巨野河(下) | 0.08 | 1.26~21 | 4.8~5.4 | 201609-201611 | 2 | |
岔河 | 0.06~0.1 | 0.1~1.0 | 37~75 | 201101-201312 | 0 | |
石村 | 0.1 | 0.001~0.7 | 62~92 | 201301-201312 | 0 | |
五龙堂 | 0.06~0.1 | 1.9~2.0 | 13~54 | 201606-201708 | 21 | |
大辛庄 | 0.08 | 5 | 25.7 | 201609 | 1 | |
鸭旺口 | 0.08 | 6.7 | 3.8 | 201609 | 1 | |
垛庄水库 | 0.08 | 0.2 | 34.2 | 201609 | 1 | |
石河 | 0.08 | 0.55 | 5.5 | 201609 | 1 | |
龙脊河 | 0.08 | 10 | 6.2 | 201609 | 1 | |
海河流域徒骇马颊河 | 张公南邻(上) | 0.08 | 0.25 | 22 | 201609 | 1 |
张公南邻(中) | 0.08 | 0.2 | 21 | 201609 | 1 | |
张公南邻(下) | 0.08 | 0.23 | 22.1 | 201609 | 1 |
Tab. 6
Generalized and measured river parameters corresponding to measured river width
计算结果 | 站点名称 | ||
---|---|---|---|
北大沙河入黄河口 | 顾小庄 | 宅科 | |
实测河宽(m) | 2.370 | 117.000 | 43.100 |
实测断面面积(m2) | 6.800 | 189.375 | 6.213 |
概化断面面积(m2) | 6.680 | 188.360 | 6.161 |
实测水力半径(m) | 0.530 | 1.616 | 0.144 |
概化水力半径(m) | 0.520 | 1.608 | 0.140 |
?Q(m3/s) | -0.071 | -2.729 | -0.008 |
?Q/Q0 | -0.030 | -0.009 | -0.027 |
[1] | Wei Zhen, Jia Haifeng, Jiang Qigui , et al. Simulation experiment of phytoplankton growth induced by flow velocity in rivers replenished with reclaimed water. Chinese Journal of Environmental Engineering, 2017,11(12):6540-6546. |
[ 魏桢, 贾海峰, 姜其贵 , 等. 再生水补水河道中流速对浮游藻类生长影响的模拟实验. 环境工程学报, 2017,11(12):6540-6546.] | |
[2] |
Ruiz J, Macías D, Peters F . Turbulence increases the average settling velocity of phytoplankton cells. Proceedings of the National Academy of Sciences of the United States of America, 2004,101(51):17720-17724.
doi: 10.1073/pnas.0401539101 |
[3] |
Escartın J, Aubrey D G . Flow structure and dispersion within algal mats. Estuarine, Coastal and Shelf Science, 1995,40(4):451-472.
doi: 10.1006/ecss.1995.0031 |
[4] | Deng Xiaoxue, Ye Aizhong, Tong Hongfu . The study of measurement and calculation method on river discharge. China Rural Water and Hydropower, 2015(6):18. |
[ 邓斅学, 叶爱中, 童洪福 , 等. 河道流量测量与计算方法研究. 中国农村水利水电, 2015(6):18.] | |
[5] | Wang Ping . Research on the measurement method of siltation river flow based on visual analysis[D]. Jinan: Shandong University, 2006. |
[ 王平 . 基于视觉分析的淤积河道流量测量方法的研究[D]. 济南: 山东大学, 2006.] | |
[6] | Zhang Jiqun, Xu Kaiqin, KAMEYAMA , et al. Estimation of river discharge using TOPEX/Poseidon Altimeter data. Acta Geographica Sinica, 2004,59(1):95-100. |
[ 张继群, 徐开钦, 龟山哲, 等 . 基于 TOPEX/Poseidon卫星数据的江河流量测算. 地理学报, 2004,59(1):95-100.] | |
[7] | Jiang Hui . Retrieval and analysis water quality parameters in Poyang Lake based on multi-source remote sensing data[D]. Nanchang: Nanchang University, 2011. |
[ 江辉 . 基于多源遥感的鄱阳湖水质参数反演与分析[D]. 南昌: 南昌大学, 2011.] | |
[8] | Li Zili . Research on surface current detection and deep current inversion by using ground wave radar[D]. Wuhan: Wuhan University, 2010. |
[ 李自立 . 地波雷达表面流探测与深层流反演算法研究[D]. 武汉: 武汉大学, 2010.] | |
[9] | Li Wei . Near-field remote sensing of riverine hydrodynamic processes with 3D large scale particle image velocimetry[D]. Hangzhou: Zhejiang University, 2016. |
[ 李蔚 . 基于立体视觉与LSPIV的河流水动力过程近距遥感测量系统[D]. 杭州: 浙江大学, 2016.] | |
[10] |
Hirpa F A, Hopson T M, De Groeve T , et al. Upstream satellite remote sensing for river discharge forecasting: Application to major rivers in South Asia. Remote Sensing of Environment, 2013,131:140-151.
doi: 10.1016/j.rse.2012.11.013 |
[11] | Costa J E, Cheng R T, Haeni F P , et al. Use of radars to monitor stream discharge by noncontact methods. Water Resources Research, 2006,42(7):27-42. |
[12] |
Costa J E, Spicer K R, Cheng R T , et al. Measuring stream discharge by non-contact methods: A Proof-of-Concept Experiment. Geophysical Research Letters, 2000,27(4):553-556.
doi: 10.1029/1999GL006087 |
[13] | LeFavour G, Alsdorf D . Water slope and discharge in the Amazon River estimated using the shuttle radar topography mission digital elevation model. Geophysical Research Letters, 2005,32(17):404-405. |
[14] |
Jung H C, Hamski J, Durand M , et al. Characterization of complex fluvial systems using remote sensing of spatial and temporal water level variations in the Amazon, Congo, and Brahmaputra rivers. Earth Surface Processes and Landforms, 2010,35(3):294-304.
doi: 10.1002/esp.v35:3 |
[15] |
Smith L C, Isacks B L, Forster R R , et al. Estimation of discharge from braided glacial rivers using ERS 1 synthetic aperture radar: First results. Water Resources Research, 1995,31(5):1325-1329.
doi: 10.1029/95WR00145 |
[16] |
Smith L C, Isacks B L, Bloom A L , et al. Estimation of discharge from three braided rivers using synthetic aperture radar satellite imagery: Potential application to ungaged basins. Water Resources Research, 1996,32(7):2021-2034.
doi: 10.1029/96WR00752 |
[17] | Song Ping, Liu Yuanbo, Liu Yanchun . Advances in satellite retrieval of terrestrial surface water parameters. Advances in Earth Science, 2011,26(7):731-740. |
[ 宋平, 刘元波, 刘燕春 . 陆地水体参数的卫星遥感反演研究进展. 地球科学进展, 2011,26(7):731-740.] | |
[18] |
Xu K, Zhang J, Watanabe M , et al. Estimating river discharge from very high-resolution satellite data: A case study in the Yangtze River, China. Hydrological Processes, 2004,18(10):1927-1939.
doi: 10.1002/(ISSN)1099-1085 |
[19] | Leopold L B, Maddock T . The hydraulic geometry of stream channels and some physiographic implications. US Government Printing Office, 1953,252:22-53. |
[20] | Pavelsky T M . Using width‐based rating curves from spatially discontinuous satellite imagery to monitor river discharge. Hydrological Processes, 2014,28(6):3035-3040. |
[21] |
Gleason C J, Smith L C . Toward global mapping of river discharge using satellite images and at-many-stations hydraulic geometry. Proceedings of the National Academy of Sciences, 2014,111(13):4788-4791.
doi: 10.1073/pnas.1317606111 |
[22] |
Gleason C J, Wang J . Theoretical basis for at-many-stations hydraulic geometry. Geophysical Research Letters, 2015,42(17):7107-7114.
doi: 10.1002/2015GL064935 |
[23] | Zhang J Q, Xu K Q, Watanabc M . Estimation of river discharge using very high-resolution satellite data in Yangtze River//Proceedings of International Symposium on Remote Sensing, October 30-Novermber 1, 2002, Sokcho, Korea, 728-733. |
[24] |
Getirana A C V, Peters-Lidard C . Estimating water discharge from large radar altimetry datasets. Hydrology and Earth System Sciences, 2013,17(3):923.
doi: 10.5194/hess-17-923-2013 |
[25] | Papa F, Durand F, Rossow W B , et al. Satellite altimeter-derived monthly discharge of the Ganga-Brahmaputra River and its seasonal to interannual variations from 1993 to 2008. Journal of Geophysical Research: Oceans, 2010,115(C12):13. |
[26] |
Biancamaria S, Lettenmaier D P, Pavelsky T M . The SWOT mission and its capabilities for land hydrology. Surveys in Geophysics, 2016,37(2):307-337.
doi: 10.1007/s10712-015-9346-y |
[27] |
Pavelsky T M, Durand M T, Andreadis K M , et al. Assessing the potential global extent of SWOT river discharge observations. Journal of Hydrology, 2014,519:1516-1525.
doi: 10.1016/j.jhydrol.2014.08.044 |
[28] |
Gosling S N, Arnell N W . Simulating current global river runoff with a global hydrological model: model revisions, validation, and sensitivity analysis. Hydrological Processes, 2011,25(7):1129-1145.
doi: 10.1002/hyp.v25.7 |
[29] |
Widén-Nilsson E, Halldin S, Xu C . Global water-balance modelling with WASMOD-M: Parameter estimation and regionalisation. Journal of Hydrology, 2007,340(1/2):105-118.
doi: 10.1016/j.jhydrol.2007.04.002 |
[30] |
Rawlins M A, Lammers R B, Frolking S , et al. Simulating pan-Arctic runoff with a macro-scale terrestrial water balance model. Hydrological Processes, 2003,17(13):2521-2539.
doi: 10.1002/(ISSN)1099-1085 |
[31] |
Oki T, Nishimura T, Dirmeyer P . Assessment of annual runoff from land surface models using Total Runoff Integrating Pathways (TRIP). Journal of the Meteorological Society of Japan. Ser. II, 1999,77(1B):235-255.
doi: 10.2151/jmsj1965.77.1B_235 |
[32] |
Durand M, Gleason C J, Garambois P A , et al. An intercomparison of remote sensing river discharge estimation algorithms from measurements of river height, width, and slope. Water Resources Research, 2016,52(6):4527-4549.
doi: 10.1002/2015WR018434 |
[33] |
Birkinshaw S J, Moore P, Kilsby C G , et al. Daily discharge estimation at ungauged river sites using remote sensing. Hydrological Processes, 2014,28(3):1043-1054.
doi: 10.1002/hyp.v28.3 |
[34] |
Birkinshaw S J, O'donnell G M, Moore P , et al. Using satellite altimetry data to augment flow estimation techniques on the Mekong River. Hydrological Processes, 2010,24(26):3811-3825.
doi: 10.1002/hyp.v24.26 |
[35] | Gleason C, Garambois P A, Durand M . Tracking river flows from space. Earth & Space Science News, 2017,7(26):98. |
[36] | Lu Shanlong, Wu Bingfang, Yan Nana . Progress in river runoff monitoring by remote sensing. Advances in Earth Science, 2010,25(8):820-826. |
[ 卢善龙, 吴炳方, 闫娜娜 , 等. 河川径流遥感监测研究进展. 地球科学进展, 2010,25(8):820-826.] | |
[37] | Li Xin, Liu Shaomin, Ma Mingguo , et al. Overall design of combined remote sensing observations for eco-hydrological process in Heihe River Basin. Advances in Earth Science, 2012,27(5):481-498. |
[ 李新, 刘绍民, 马明国 , 等. 黑河流域生态—水文过程综合遥感观测联合试验总体设计. 地球科学进展, 2012,27(5):481-498.] | |
[38] | Andreadis K M, Clark E A, Lettenmaier D P , et al. Prospects for river discharge and depth estimation through assimilation of swath-altimetry into a raster-based hydrodynamics model. Geophysical Research Letters, 2007,34(10):403. |
[39] |
Vörösmarty C J, Willmott C J, Choudhury B J , et al. Analyzing the discharge regime of a large tropical river through remote sensing, ground-based climatic data, and modeling. Water Resources Research, 1996,32(10):3137-3150.
doi: 10.1029/96WR01333 |
[40] |
Watts A C, Ambrosia V G, Hinkley E A . Unmanned aircraft systems in remote sensing and scientific research: Classification and considerations of use. Remote Sensing, 2012,4(6):1671-1692.
doi: 10.3390/rs4061671 |
[41] |
Colomina I, Molina P . Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 2014,92:79-97.
doi: 10.1016/j.isprsjprs.2014.02.013 |
[42] |
Lee S, Choi Y . Topographic survey at small-scale open-pit mines using a popular rotary-wing unmanned aerial vehicle (drone). Tunnel and Underground Space, 2015,25(5):462-469.
doi: 10.7474/TUS.2015.25.5.462 |
[43] |
Cho S J, Bang E S, Kang I M . Construction of precise digital terrain model for nonmetal open-pit mine by using unmanned aerial photograph. Economic and Environmental Geology, 2015,48(3):205-212.
doi: 10.9719/EEG.2015.48.3.205 |
[44] |
Neugirg F, Stark M, Kaiser A , et al. Erosion processes in Calanchi in the Upper Orcia Valley, Southern Tuscany, Italy based on multitemporal high-resolution terrestrial LiDAR and UAV surveys. Geomorphology, 2016,269:8-22.
doi: 10.1016/j.geomorph.2016.06.027 |
[45] |
Vivoni E R, Rango A, Anderson C A , et al. Ecohydrology with unmanned aerial vehicles. Ecosphere, 2014,5(10):1-14.
doi: 10.1890/ES13-00182.1 |
[46] | Li Deren, Chen Xiaoling, Cai Xiaobin . Spatial information techniques in rapid response to Wenchuan Earthquake. Journal of Remote Sensing, 2008,12(6):841-851. |
[ 李德仁, 陈晓玲, 蔡晓斌 . 空间信息技术用于汶川地震救灾. 遥感学报, 2008,12(6):841-851.] | |
[47] | Zhang Yuan, Zhao Changsen, Yang Shengtian , et al. A method to calculate ecological flow base by coupling multi-species flow velocity requirement. Journal of Beijing Normal University (Natural Science), 2017,53(3):337-343. |
[ 张远, 赵长森, 杨胜天 , 等. 耦合多物种生态流速的生态需水计算方法. 北京师范大学学报: 自然科学版, 2017,53(3):337-343.] | |
[48] | Zhang Chunbin, Yang Shengtian, Zhao Changsen , et al. Topographic data accuracy verification of small consumer UAV. Journal of Remote Sensing, 2018,22(1):185-195. |
[ 张纯斌, 杨胜天, 赵长森 , 等. 小型消费级无人机地形数据精度验证. 遥感学报, 2018,22(1):185-195.] | |
[49] |
Zhao C S, Zhang C B, Yang S T , et al. Calculating e-flow using UAV and ground monitoring. Journal of Hydrology, 2017,552:351-365.
doi: 10.1016/j.jhydrol.2017.06.047 |
[50] | Liu Changming, gabbro, Song Jinxi . Ecological hydraulic radius method for estimating ecological water requirement in river channels. Progress in Natural Science, 2007,17(1):42-48. |
[ 刘昌明, 门宝辉, 宋进喜 . 河道内生态需水量估算的生态水力半径法. 自然科学进展, 2007,17(1):42-48.] | |
[51] | Sun Dongpo, Ding Xin. National Planning Textbook of "11th Five-Year" in General Higher Education: Hydraulics. Zhengzhou: Zhengzhou University Press, 2007. |
[ 孙东坡, 丁新求 . 普通高等教育“十一五”国家级规划教材: 水力学. 郑州: 郑州大学出版社, 2007.] | |
[52] | Yao Zhigang, Bao Xianwen, Li Na , et al. Analysis of tidal and residual currents across Kemen Channel based on shipboard ADCP measurements. Acta Oceanologica Sinica, 2012,34(6):1-10. |
[ 姚志刚, 鲍献文, 李娜 , 等. 基于船载ADCP观测对罗源湾湾口断面潮流及余流的分析. 海洋学报(中文版), 2012,34(6):1-10.] | |
[53] | Zhang Daichao, Wan Hong, Wang Minhua . Application analysis of ADCP technology in hydrological discharge test. Water Conservancy Science and Technology and Economy, 2015,21(1):73-74. |
[ 张代超, 万红, 汪敏华 . 水文流量测验中走航式 ADCP 技术的应用分析. 水利科技与经济, 2015,21(1):73-74.] | |
[54] | Zhao Yanmin, Qin Yanwen, Zheng Binghui , et al. Emergency health risk assessment of water pollution accident. China Environmental Science, 2014,34(5):1328-1335. |
[ 赵艳民, 秦延文, 郑丙辉 , 等. 突发性水污染事故应急健康风险评价. 中国环境科学, 2014,34(5):1328-1335.] | |
[55] | Ai Hengyu, Liu Tongwei . Statistical review of the major unexpected water contamination incidents at home in the period from 2000 to 2011. Journal of Safety and Environment, 2013,13(4):284-288. |
[ 艾恒雨, 刘同威 . 2000-2011年国内重大突发性水污染事件统计分析. 安全与环境学报, 2013,13(4):284-288.] |
[1] | FU Yin, LIU Qiao, LIU Guoxiang, ZHANG Bo, CAI Jialun, WANG Xiaowen, ZHANG Rui. Monitoring glacier surface velocity and ablation using high-resolution UAV imagery [J]. Acta Geographica Sinica, 2021, 76(5): 1245-1256. |
[2] | XU Chenchen, YE Huping, YUE Huanyin, TAN Xiang, LIAO Xiaohan. Iterative construction of UAV low-altitude air route network in an urbanized region: Theoretical system and technical roadmap [J]. Acta Geographica Sinica, 2020, 75(5): 917-930. |
[3] | SUN Qian,YU Kunxia,LI Zhanbin,LI Peng,ZHANG Xiaoming,GONG Junfu. The trends of streamflow and sediment and their driving factors in the middle reaches of the Yellow River [J]. Acta Geographica Sinica, 2018, 73(5): 945-956. |
[4] | Jianyu LIU, Qiang ZHANG, Xi CHEN, Xihui GU. Quantitative evaluations of human- and climate-inducedimpacts on hydrological processes of China [J]. Acta Geographica Sinica, 2016, 71(11): 1875-1885. |
[5] | LI Baofu, CHEN Yaning, CHEN Zhongsheng, LI Weihong. The Effect of Climate Change during Snowmelt Period on Streamflow in the Mountainous Areas of Northwest China [J]. Acta Geographica Sinica, 2012, 67(11): 1461-1470. |
[6] | GONG Tongliang, LIU Changming, LIU Jingshi. Hydrological Response of Lhasa River to Climate Change and Permafrost Degradation in Xizang [J]. Acta Geographica Sinica, 2006, 61(5): 519-526. |
[7] | DING Yong jian, YE Bai sheng, LIU Shi ying . Effect of Climatic Factors on Streamflow in the Alpine Catchment of the Qilian Mountains [J]. Acta Geographica Sinica, 1999, 54(5): 431-437. |
[8] | Fei Hongping. TOWARDS THEORY AND METHODOLOGY OF THE DELIMITATION OF THE INDUSTRIAL BELT ─A CASE SWDY OF THE INDUSTRIAL BELT ALONG THE QINGDAO-JINAN RAILWAY [J]. Acta Geographica Sinica, 1994, 49(3): 214-225. |