Acta Geographica Sinica ›› 2019, Vol. 74 ›› Issue (7): 1319-1332.doi: 10.11821/dlxb201907004
• Climate Change and Surface Processes • Previous Articles Next Articles
LI Chaojun1,2,WANG Shijie2,3,BAI Xiaoyong2,3(),TAN Qiu1,LI Huiwen2,LI Qin2,DENG Yuanhong2,YANG Yujie1,2,TIAN Shiqi1,2,HU Zeyin2
Received:
2018-10-23
Revised:
2019-03-03
Online:
2019-07-25
Published:
2019-07-23
Contact:
BAI Xiaoyong
E-mail:baixiaoyong@126.com
Supported by:
LI Chaojun,WANG Shijie,BAI Xiaoyong,TAN Qiu,LI Huiwen,LI Qin,DENG Yuanhong,YANG Yujie,TIAN Shiqi,HU Zeyin. Estimation of carbonate rock weathering-related carbon sink in global major river basins[J].Acta Geographica Sinica, 2019, 74(7): 1319-1332.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Fig. 4
CO2 uptake flux and rate in global major river basins based on the K?ppen climate classification. ((a) K?ppen climate classification; (b) CO2 uptake fluxs and rates in different climatic zones; ((Af) tropical rainforest climate, (Am) tropical monsoon climate, (Aw) tropical dry and wet season climate, (BWh, BWk) desert climate, (BSh, BSk) semi-arid climate, (Cfa, Cwa) subtropical humid climate, (Cfb, Cwb, Cwc, Cfc) maritime climate, (Csa, Csb) mediterranean climate, (Dsa Dfa, Dwa, Dsb, Dfb, Dwb) continental humid climate, (Dfc, Dwc, Dfd, Dwd, Dsc, Dsd) subpolar climate,(ET, EF) polar climate) "
Tab. 1
Comparison of different research results of carbonate-related weathering carbon sink estimation"
作者 | 估算区域 | 研究数据 | 估算方法 | 吸收速率 (Pg CO2 yr-1) | 固碳速率 (Pg C yr-1) | 文献 来源 |
---|---|---|---|---|---|---|
Meybeck M (1987) | 全球 | 流域岩石类型组成数据 | 温带流模型 | 0.51 | 0.14 | [12] |
Gaillardet等 (1999) | 全球 | 60条最大河流站点汇编数据 | 反演模型 | 0.55 | 0.15 | [13] |
Liu等 (2000) | 全球 | 中国部分站点数据汇编 | 水化学径流法 | 0.42 | 0.11 | [14] |
Gombert P (2002) | 全球 | 266个气象站点数据 | 热力学溶蚀模型 | 1.1 | 0.30 | [37] |
Martin J B (2017) | 全球 | 全球岩性数据 | GEM-CO2模型 | 2.93 | 0.80 | [15] |
Li等 (2018) | 全球 | 生态气象水文遥感数据及站点数据 | 热力学溶蚀模型 | 3.26 | 0.89 | [16] |
Liu等 (2010, 2011, 2018) | 全球 | 全球各地降水中DIC/HCO3-浓度 站点数据汇编 | 偶联碳酸盐岩风化模型 | 1.76 | 0.48 | [26, 33, 46] |
本研究 | 世界90个河流流域 | 90条大型河流站点汇编数据 | 水化学径流法 | 0.43 | 0.12 | 本文 |
[1] |
Peters G P . Beyond carbon budgets. Nature Geoscience, 2018,11(6):378-380.
doi: 10.1038/s41561-018-0142-4 |
[2] |
Liu Z, Dreybrodt W . Significance of the carbon sink produced by H2O-carbonate-CO2-aquatic phototroph interaction on land. Science Bulletin, 2015,60(2):182-191.
doi: 10.1007/s11434-014-0682-y |
[3] |
Maher K, Chamberlain C P . Hydrologic regulation of chemical weathering and the geologic carbon cycle. Science, 2014,343(6178):1502-1504.
doi: 10.1126/science.1250770 |
[4] | Allen G H, Pavelsky T M . Global extent of rivers and streams. Science, 2018, ,361(6402):eaat0636. |
[5] |
Pu Junbing, Jiang Zhongcheng, Yuan Daoxian , et al. Some opinions on rock-weathering-related carbon sinks from the IPCC Fifth Assessment Report. Advances in Earth Science, 2015,30(10):1081-1090.
doi: 10.11867/j.issn.1001-8166.2015.10.1081. |
[ 蒲俊兵, 蒋忠诚, 袁道先 , 等. 岩石风化碳汇研究进展: 基于IPCC第五次气候变化评估报告的分析. 地球科学进展, 2015,30(10):1081-1090.]
doi: 10.11867/j.issn.1001-8166.2015.10.1081. |
|
[6] |
Qiu Dongsheng, Zhuang Dafang, Hu Yunfeng , et al. Estimation of carbon sink capacity caused by rock weathering in China. Earth Science, 2004,29(2):177-182.
doi: 10.3321/j.issn:1000-2383.2004.02.009 |
[ 邱冬生, 庄大方, 胡云锋 , 等. 中国岩石风化作用所致的碳汇能力估算. 地球科学, 2004,29(2):177-182.]
doi: 10.3321/j.issn:1000-2383.2004.02.009 |
|
[7] | Chen Chongying, Liu Zhaihua . The role of biological carbon pump in the carbon sink and water environment improvement in karst surface aquatic ecosystems. Chinese Science Bulletin, 2017,62(30):3440-3450. |
[ 陈崇瑛, 刘再华 . 喀斯特地表水生生态系统生物碳泵的碳汇和水环境改善效应. 科学通报, 2017,62(30):3440-3450.] | |
[8] | Cao Jianhua, Jiang Zhongcheng, Yuan Daoxian , et al. The progress in the study of the karst dynamic system and global changes in the past 30 years. Geology in China, 2017,44(5):874-900. |
[ 曹建华, 蒋忠诚, 袁道先 , 等. 岩溶动力系统与全球变化研究进展. 中国地质, 2017,44(5):874-900.] | |
[9] | Li Liang, Cao Jianhua, Huang Fen , et al. Relation models of Ca2+, Mg2+ and HCO3 –and analyses of carbon sinks influencing factors in the Chaotian River, Guilin . Hydrogeology &Engineering Geology, 2013,40(4):106-111. |
[ 李亮, 曹建华, 黄芬 , 等. 桂林潮田河Ca2+、Mg2+与HCO3 –关系模型及岩溶碳汇影响因素分析. 水文地质工程地质, 2013,40(4):106-111.] | |
[10] |
Suchet P A, Probst J L . Modelling of atmospheric CO2, consumption by chemical weathering of rocks: Application to the Garonne, Congo and Amazon basins. Chemical Geology, 1993,107(s3/4):205-210.
doi: 10.1016/0009-2541(93)90174-H |
[11] | Suchet P A, Probst J L . A global model for present-day atmospheric/soil CO2 consumption by chemical erosion of continental rocks (GEM-CO2). Tellus, 2010,47(1/2):273-280. |
[12] |
Meybeck M . Global chemical weathering of surficial rocks estimated from river dissolved loads. American Journal of Science, 1987,287(5):401-428.
doi: 10.2475/ajs.287.5.401 |
[13] |
Gaillardet J, Dupré B, Louvat P , et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology, 1999,159(1):3-30.
doi: 10.1016/S0009-2541(99)00031-5 |
[14] |
Liu Z, Zhao J . Contribution of carbonate rock weathering to the atmospheric CO2 sink. Environmental Geology, 2000,39(9):1053-1058.
doi: 10.1007/s002549900072 |
[15] |
Martin J B . Carbonate minerals in the global carbon cycle. Chemical Geology, 2017,449:58-72.
doi: 10.1016/j.chemgeo.2016.11.029 |
[16] |
Li H, Wang S, Bai X , et al. Spatiotemporal distribution and national measurement of the global carbonate carbon sink. Science of the Total Environment, 2018,643:157. DOI: 10.1016/j.scitotenv.2018.06.196.
doi: 10.1016/j.scitotenv.2018.06.196 |
[17] | Hartmann J, Jansen N, Dürr H H , et al. Global CO2-consumption by chemical weathering: What is the contribution of highly active weathering regions? Global & Planetary Change, 2009,69(4):185-194. |
[18] |
Hindshaw R S, Tipper E T, Reynolds B C , et al. Hydrological control of stream water chemistry in a glacial catchment (Damma Glacier, Switzerland). Chemical Geology, 2011,285(1):215-230.
doi: 10.1016/j.chemgeo.2011.04.012 |
[19] |
Jiang L, Yao Z, Wang R , et al. Hydrochemistry of the middle and upper reaches of the Yarlung Tsangpo River system: weathering processes and CO2 consumption. Environmental Earth Sciences, 2015,74(3):2369-2379.
doi: 10.1007/s12665-015-4237-6 |
[20] |
Liu B, Liu C Q, Zhang G , et al. Chemical weathering under mid- to cool temperate and monsoon-controlled climate: A study on water geochemistry of the Songhuajiang River system, Northeast China. Applied Geochemistry, 2013,31(11):265-278.
doi: 10.1016/j.apgeochem.2013.01.015 |
[21] | Sun X, Mörth C M, Humborg C , et al. Temporal and spatial variations of rock weathering and CO2 consumption in the Baltic Sea catchment. Chemical Geology, 2017,466. DOI: 10.1016/j.chemgeo.2017.04.028. |
[22] |
Wu Weihua, Zheng Hongbo, Yang Jiedong , et al. Chemical weathering of large river catchments in China and the global carbon cycle. Quaternary Sciences, 2011,31(3):397-407.
doi: 10.3969/j.issn.1001-7410.2011.03.01 |
[ 吴卫华, 郑洪波, 杨杰东 , 等. 中国河流流域化学风化和全球碳循环. 第四纪研究, 2011,31(3):397-407.]
doi: 10.3969/j.issn.1001-7410.2011.03.01 |
|
[23] |
Yan J, Li J, Ye Q , et al. Concentrations and exports of solutes from surface runoff in Houzhai Karst Basin, southwest China. Chemical Geology , 2012,304/305(3):1-9.
doi: 10.1016/j.chemgeo.2012.02.003 |
[24] | Song Xianwei, Gao Yang, Wen Xuefa , et al. Rock-weathering-related carbon sinks and associated ecosystem service functions in the karst critical zone in China. Acta Geographica Sinica, 2016,71(11):1926-1938. |
[ 宋贤威, 高扬, 温学发 , 等. 中国喀斯特关键带岩石风化碳汇评估及其生态服务功能. 地理学报, 2016,71(11):1926-1938.] | |
[25] |
Wang G, Dai M, Shen P , et al. Quantifying uncertainty sources in the gridded data of sea surface CO2 partial pressure. Journal of Geophysical Research: Oceans, 2014,119:1-9.
doi: 10.1002/2013JC009286 |
[26] |
Liu Z, Dreybrodt W, Wang H . A new direction in effective accounting for the atmospheric CO2 budget: Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms. Earth Science Reviews, 2010,99(3):162-172.
doi: 10.1016/j.earscirev.2010.03.001 |
[27] | Yuan Daoxian . Modern karstology and global change study. Earth Science Frontiers, 1997(1):17-25. |
[ 袁道先 . 现代岩溶学和全球变化研究. 地学前缘, 1997(1):17-25.] | |
[28] | Gaillardet J, Calmels D, Romero-Mujalli G , et al. Global climate control on carbonate weathering intensity. Chemical Geology, 2018. DOI: 10.1016/j.chemgeo.2018.05.009. |
[29] |
Hartmann Jens . Bicarbonate-fluxes and CO2-consumption by chemical weathering on the Japanese Archipelago:Application of a multi-lithological model framework. Chemical Geology, 2009,265(3):237-271.
doi: 10.1016/j.chemgeo.2009.03.024 |
[30] |
Flintrop C, Hohlmann B, Jasper T , et al. Anatomy of pollution: Rivers of North Rhine-Westphalia, Germany. American Journal of Science, 1996,296(1):58-98.
doi: 10.2475/ajs.296.1.58 |
[31] |
Roy S, Gaillardet J, Allègre C J . Geochemistry of dissolved and suspended loads of the Seine River, France: Anthropogenic impact, carbonate and silicate weathering. Geochimica Et Cosmochimica Acta, 1999,63(9):1277-1292.
doi: 10.1016/S0016-7037(99)00099-X |
[32] |
Detwiler R P, Hall C A S .Tropical forests and the global carbon cycle. Science, 1988,239(4835):42-47.
doi: 10.1126/science.239.4835.42 |
[33] |
Liu Z, Macpherson G L, Groves C , et al. Large and active CO2 uptake by coupled carbonate weathering. Earth-Science Reviews, 2018,182:42-49. DOI: 10.1016/j.earscirev.2018.05.007.
doi: 10.1016/j.earscirev.2018.05.007 |
[34] | Peel M C, Finlayson B L, Mcmahon T A . Updated world map of the Köppen-Geiger climate classification. Hydrology & Earth System Sciences, 2007,11(3):259-263. |
[35] | Sun Hailong, Liu Zaihua, Yang Rui , et al. Spatial and seasonal variations of hydrochemistry of the Peral River and Implications for estimating the rock weathering-related carbon sink. Earth and Environment, 2017,45(1):57-65. |
[ 孙海龙, 刘再华, 杨睿 , 等. 珠江流域水化学组成的时空变化特征及对岩石风化碳汇估算的意义. 地球与环境, 2017,45(1):57-65.] | |
[36] |
Beaulieu E, Goddéris Y, Donnadieu Y , et al. High sensitivity of the continental-weathering carbon dioxide sink to future climate change. Nature Climate Change, 2012,2(5):346-349.
doi: 10.1038/nclimate1419 |
[37] | Gombert P . Role of karstic dissolution in global carbon cycle. Global & Planetary Change, 2002,33(1):177-184. |
[38] |
Zhang L L, Zhao Z Q, Zhang W , et al. Characteristics of water chemistry and its indication of chemical weathering in Jinshajiang, Lancangjiang and Nujiang drainage basins. Environmental Earth Sciences, 2016,75(6):506. DOI: 10.1007/s12665-015-5115-y.
doi: 10.1007/s12665-015-5115-y |
[39] | Li Tiantian, Ji Hongbing, Jiang Yongbin , et al. Hydro-geochemistry and the sources of DIC in the upriver tributaries of the Ganjiang River. Acta Geographica Sinica, 2007,62(7):764-775. |
[ 李甜甜, 季宏兵, 江用彬 , 等. 赣江上游河流水化学的影响因素及DIC来源. 地理学报, 2007,62(7):764-775.] | |
[40] | Zeng Qingrui, Liu Zaihua . Is basalt weathering a major mechanism for atmospheric CO2 consumption? Chinese Science Bulletin, 2017,62(10):1041-1049. |
[ 曾庆睿, 刘再华 . 玄武岩风化是重要的碳汇机制吗? 科学通报, 2017,62(10):1041-1049.] | |
[41] |
Hurwitz S, Evans W C, Lowenstern J B . River solute fluxes reflecting active hydrothermal chemical weathering of the Yellowstone Plateau Volcanic Field, USA. Chemical Geology, 2010,276(3):331-343.
doi: 10.1016/j.chemgeo.2010.07.001 |
[42] |
Gaillardet J, Galy A . Atmospheric science: Himalaya-carbon sink or source? Science, 2008,320(5884):1727-1728.
doi: 10.1126/science.1159279 |
[43] |
Zhang Zhigan . Discussion on article "Calculation of atmospheric CO2 sink formed in karst processes of karst-divided regions in China". Carsologica Sinica, 2012,31(3):339-344.
doi: 10.3969/j.issn.1001-4810.2012.03.017 |
[ 张之淦 . 对《中国岩溶作用产生的大气CO2碳汇的分区计算》一文的商榷. 中国岩溶, 2012,31(3):339-344.]
doi: 10.3969/j.issn.1001-4810.2012.03.017 |
|
[44] | Wang Shijie, Liu Zaihua, Ni Jian , et al. A review of research progress and future prospective of carbon cycle in karst area of south China. Earth and Environment, 2017,45(1):2-9. |
[ 王世杰, 刘再华, 倪健 , 等. 中国南方喀斯特地区碳循环研究进展. 地球与环境, 2017,45(1):2-9.] | |
[45] | Bai Xiaoyong, Wang Shijie, Chen Qiwei , et al. Spatio-temporal evolution process and its evaluation method of karst rocky desertification in Guizhou Province. Acta Geographica Sinica, 2009,64(5):609-618. |
[ 白晓永, 王世杰, 陈起伟 , 等. 贵州土地石漠化类型时空演变过程及其评价. 地理学报, 2009,64(5):609-618.] | |
[46] | Liu Z, Dreybrodt W, Liu H . Atmospheric CO2 sink: Silicate weathering or carbonate weathering? Quaternary Sciences, 2011,26(3):S292-S294. |
No related articles found! |
|