Acta Geographica Sinica ›› 2019, Vol. 74 ›› Issue (3): 586-598.doi: 10.11821/dlxb201903014
Special Issue: 地理大数据
• Big Geodata • Previous Articles Next Articles
Tao PEI1,2(), Yaxi LIU1,2, Sihui GUO1,2, Hua SHU1,2, Yunyan DU1,2, Ting MA1,2, Chenghu ZHOU1,2
Received:
2018-10-08
Revised:
2019-02-15
Online:
2019-03-25
Published:
2019-03-19
Tao PEI, Yaxi LIU, Sihui GUO, Hua SHU, Yunyan DU, Ting MA, Chenghu ZHOU. Principle of big geodata mining[J].Acta Geographica Sinica, 2019, 74(3): 586-598.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Li Deren, Cheng Tao.Knowledge discovery from GIS databases. Acta Geodaetica et Cartographica Sinica, 1995, 24(1): 37-44. |
[李德仁, 程涛. 从GIS数据库中发现知识. 测绘学报, 1995, 24(1): 37-44.] | |
[2] | Harvey J M, Han J W.Geographic Data Mining and Knowledge Discovery. London: CRC Press, 2009. |
[3] |
Song C, Qu Z, Blumm N, et al.Limits of predictability in human mobility. Science, 2010, 327(5968): 1018-1021.
doi: 10.1126/science.1177170 |
[4] |
Ginsberg J, Mohebbi M H, Patel R S, et al.Detecting influenza epidemics using search engine query data. Nature, 2009, 457(7232): 1012-1015.
doi: 10.1038/nature07634 |
[5] |
Silver D, Huang A, Maddison C J, et al.Mastering the game of Go with deep neural networks and tree search. Nature, 2016, 529(7587): 484-489.
doi: 10.1038/nature16961 pmid: 26819042 |
[6] |
Silver D, Schrittwieser J, Simonyan K, et al.Mastering the game of Go without human knowledge. Nature, 2017, 550(7676): 354-359.
doi: 10.1038/nature24270 pmid: 29052630 |
[7] |
Mayer-Schonberger V, Cukier K.Big Data: A Revolution That Will Transform How We Live, Work, and Think. London: John Murray, 2013.
doi: 10.1080/1369118X.2014.923482 |
[8] | Marr B.Big Data: Using SMART Big Data, Analytics and Metrics to Make Better Decisions and Improve Performance. Chichester, UK: John Wiley & Sons, 2015. |
[9] |
Liu Yu.Revisiting several basic geographical concepts: A social sensing perspective. Acta Geographica Sinica, 2016, 71(4): 564-575.
doi: 10.11821/dlxb201604003 |
[刘瑜. 社会感知视角下的若干人文地理学基本问题再思考, 地理学报, 2016, 71(4): 564-575.]
doi: 10.11821/dlxb201604003 |
|
[10] |
Liu Z, Ma T, Du Y, et al.Mapping hourly dynamics of urban population using trajectories reconstructed from mobile phone records. Transactions in GIS, 2018, 22(2): 494-513.
doi: 10.1111/tgis.12323 |
[11] | Zheng Y, Liu Y, Yuan J, et al.Urban computing with taxicabs//Proceedings of the 13th International Conference on Ubiquitous Computing, Beijing, China, September 17-21, 2011: 89-98. |
[12] | Castro P S, Zhang D, Li S.Urban traffic modelling and prediction using large scale taxi GPS traces//Proceeding of Pervasive'12 Proceedings of the 10th International Conference on Pervasive Computing, Newcastle, UK, June 18-22, 2012: 57-72. |
[13] |
Kong X, Xu Z, Shen G, et al.Urban traffic congestion estimation and prediction based on floating car trajectory data. Future Generation Computer Systems: The International Journal of EScience, 2016, 61: 97-107.
doi: 10.1016/j.future.2015.11.013 |
[14] |
Niu N, Liu X, Jin H, et al.Integrating multi-source big data to infer building functions. International Journal of Geographical Information Science, 2017, 31(9): 1871-1890.
doi: 10.1080/13658816.2017.1325489 |
[15] |
Newing A, Anderson B, Bahaj A B, et al.The role of digital trace data in supporting the collection of population statistics-the case for smart metered electricity consumption data. Population, Space and Place, 2016, 22(8): 849-863.
doi: 10.1002/psp.1972 |
[16] | NASA. New night lights maps open up possible real-time applications. , 2017. |
[17] |
Chen J, Ban Y, Li S.China: Open access to Earth land-cover map. Nature, 2015, 514(7523): 434.
doi: 10.1038/514434c pmid: 25341776 |
[18] |
Liu Yang, Liu Ronggao.Retrieval of global long-term leaf area index from LTDR AVHRR and MODIS observations. Journal of Geo-Information Science, 2015, 17(11): 1304-1312.
doi: 10.3724/SP.J.1047.2015.01304 |
[刘洋, 刘荣高. 基于LTDR AVHRR和MODIS观测的全球长时间序列叶面积指数遥感反演. 地球信息科学学报, 2015, 17(11): 1304-1312.]
doi: 10.3724/SP.J.1047.2015.01304 |
|
[19] |
Oliver M A, Webster R.Kriging: A method of interpolation for geographical information systems. International Journal of Geographical Information System, 1990, 4(3): 313-332.
doi: 10.1080/02693799008941549 |
[20] |
Stein M L.Interpolation of Spatial Data: Some Theory for Kriging. New York: Springer Science & Business Media, 2012.
doi: 10.1080/00401706.2000.10485731 |
[21] |
Brunsdon C, Fotheringham A S, Charlton M E.Geographically weighted regression: A method for exploring spatial nonstationarity. Geographical Analysis, 1996, 28(4): 281-298.
doi: 10.1111/j.1538-4632.1996.tb00936.x |
[22] |
Brunsdon C, Fotheringham S, Charlton M.Geographically weighted regression. Journal of the Royal Statistical Society: Series D (The Statistician), 1998, 47(3): 431-443.
doi: 10.1111/rssd.1998.47.issue-3 |
[23] |
Zhu A, Yang L, Li B, et al.Construction of membership functions for predictive soil mapping under fuzzy logic. Geoderma, 2010, 155(3/4): 164-174.
doi: 10.1016/j.geoderma.2009.05.024 |
[24] |
Zhu A, Qi F, Moore A, et al.Prediction of soil properties using fuzzy membership values. Geoderma, 2010, 158(3/4): 199-206.
doi: 10.1016/j.geoderma.2010.05.001 |
[25] |
Zhang Wenjian.WMO integrated global observing system (WIGOS). Meteorological Monthly, 2010, 36(3): 1-8.
doi: 10.7519/j.issn.1000-0526.2010.3.001 |
[张文建. 世界气象组织综合观测系统(WIGOS). 气象, 2010, 36(3): 1-8.]
doi: 10.7519/j.issn.1000-0526.2010.3.001 |
|
[26] | NOAA/National Centers for Environmental Information. Global Historical Climate Network Daily - Description. , 2018. |
[27] | Qian Chengcheng, Cheng Ge.Big data science for ocean: Present and future. Bulletin of Chinese Academy of Sciences, 2018, 33(8): 884-891. |
[钱程程, 陈戈. 海洋大数据科学发展现状与展望. 中国科学院院刊, 2018, 33(8): 884-891.] | |
[28] |
Yuan Y, Wei G, Lu Y.Evaluating gender representativeness of location-based social media: A case study of Weibo. Annals of GIS, 2018, 24(3): 163-176.
doi: 10.1080/19475683.2018.1471518 |
[29] | Data Center of Sina Micro-blog. 2017 User Development Report of Sina Micro-blog. . |
[新浪微博数据中心. 2017. 2017微博用户发展报告. .] | |
[30] |
Zhao Z, Shaw S L, Xu Y, et al.Understanding the bias of call detail records in human mobility research. International Journal of Geographical Information Science, 2016, 30(9): 1738-1762.
doi: 10.1080/13658816.2015.1137298 |
[31] |
Congalton R G.A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 1991, 37(1): 35-46.
doi: 10.1046/j.1365-2249.2000.01137.x |
[32] |
Zandbergen P A.Positional accuracy of spatial data: Non-normal distributions and a critique of the national standard for spatial data accuracy. Transactions in GIS, 2008, 12(1): 103-130.
doi: 10.1111/j.1467-9671.2008.01088.x |
[33] | Cheng R, Emrich T, Kriegel H P, et al.Managing uncertainty in spatial and spatio-temporal data//Proceedings of the IEEE 30th International Conference on Data Engineering (ICDE), Chicago, IL, USA, Mar 31-Apr 04, 2014: 1302-1305. |
[34] | Zhao B, Zhang S.Rethinking spatial data quality: Pokémon go as a case study of location spoofing. The Professional Geographer, 2018. Doi: 10.1080/00330124.2018.1479973. |
[35] |
Lazer D, Kennedy R, King G, et al.The parable of Google flu: Traps in big data analysis. Science, 2014, 343(6176): 1203-1205.
doi: 10.1126/science.1248506 pmid: 24626916 |
[36] |
Fayyad U, Piatetsky-Shapiro G, Smyth P.The KDD process for extracting useful knowledge from volumes of data. Communications of the ACM, 1996, 39(11): 27-34.
doi: 10.1145/240455.240464 |
[37] |
Benz U C, Hofmann P, Willhauck G, et al.Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS Journal of Photogrammetry and Remote Sensing, 2004, 58(3/4): 239-258.
doi: 10.1016/j.isprsjprs.2003.10.002 |
[38] | Manyika J, Chui M, Brown B, et al.Big data: The next frontier for innovation, competition, and productivity. Analytics, 2011. |
[39] |
Sun Zhongwei, Lu Zi.A geographical perspective to the elementary nature of space of flows. Geography and Geo-Information Science, 2005, 21(1): 109-112.
doi: 10.3969/j.issn.1672-0504.2005.01.027 |
[孙中伟, 路紫. 流空间基本性质的地理学透视. 地理与地理信息科学, 2005, 21(1): 109-112.]
doi: 10.3969/j.issn.1672-0504.2005.01.027 |
|
[40] |
Han Zhigang, Kong Yunfeng, Qin Yaochen.Research on geographic representation: A review. Progress in Geography, 2011, 30(2): 141-148.
doi: 10.11820/dlkxjz.2011.02.002 |
[韩志刚, 孔云峰, 秦耀辰. 地理表达研究进展. 地理科学进展, 2011, 30(2): 141-148.]
doi: 10.11820/dlkxjz.2011.02.002 |
|
[41] |
Castells M.Grassrooting the space of flows. Urban Geography, 1999, 20(4): 294-302.
doi: 10.2747/0272-3638.20.4.294 |
[42] |
Goodchild M F, Yuan M, Cova T J.Towards a general theory of geographic representation in GIS. International Journal of Geographical Information Science, 2007, 21(3): 239-260.
doi: 10.1080/13658810600965271 |
[43] | Batty M.The New Science of Cities. Cambridge, MA: Mit Press, 2013. |
[44] |
Tobler W R.A computer movie simulating urban growth in the Detroit region. Economic Geography, 1970, 46(suppl.1): 234-240.
doi: 10.2307/143141 |
[45] |
Goodchild M F.The validity and usefulness of laws in geographic information science and geography. Annals of the Association of American Geographers, 2004, 94(2): 300-303.
doi: 10.1111/j.1467-8306.2004.09402008.x |
[46] |
Du Zhenyu, Xing Shangjun, Song Yumin, et al.Lead pollution along expressways and its attenuation by green belts in Shandong province. Journal of Soil and Water Conservation, 2007, 21(5): 175-179.
doi: 10.3321/j.issn:1009-2242.2007.05.041 |
[杜振宇, 邢尚军, 宋玉民, 等. 山东省高速公路两侧土壤的铅污染及绿化带的防护作用. 水土保持学报, 2007, 21(5): 175-179.]
doi: 10.3321/j.issn:1009-2242.2007.05.041 |
|
[47] |
Chen Long, Stuart Neil, Mackaness A Williams.Cluster and hot spot analysis in Lincoln, Nebraska, USA. Geomatics and Spatial information Technology, 2015, 38(3): 189-192.
doi: 10.3969/j.issn.1672-5867.2015.03.064 |
[陈龙, Stuart Neil, Mackaness A Williams.美国内布拉斯加州林肯市犯罪行为的聚类及热点分布分析. 测绘与空间地理信息, 2015, 38(3): 189-192.]
doi: 10.3969/j.issn.1672-5867.2015.03.064 |
|
[48] |
Cheng Changxiu, Shi Peijun, Song Changqing, et al.Geographic big-data: A new opportunity for geography complexity study. Acta Geographica Sinica, 2018, 73(8): 1397-1406.
doi: 10.11821/dlxb201808001 |
[程昌秀, 史培军, 宋长青, 等. 地理大数据为地理复杂性研究提供新机遇. 地理学报, 2018, 73(8): 1397-1406.]
doi: 10.11821/dlxb201808001 |
|
[49] |
Keola S, Andersson M, Hall O.Monitoring economic development from space: Using nighttime light and land cover data to measure economic growth. World Development, 2015, 66: 322-334.
doi: 10.1016/j.worlddev.2014.08.017 |
[50] |
Pei T, Sobolevsky S, Ratti C, et al.A new insight into land use classification based on aggregated mobile phone data. International Journal of Geographical Information Science, 2014, 28(9): 1988-2007.
doi: 10.1080/13658816.2014.913794 |
[51] |
Pei T, Gao J, Ma T, et al.Multi-scale decomposition of point process data. GeoInformatica, 2012, 16(4): 625-652.
doi: 10.1007/s10707-012-0165-8 |
[52] |
Pei Tao, Li Ting, Zhou Chenghu.Spatiotemporal point process: A new data model, analysis methodology and viewpoint for geoscientific problem. Journal of Geo-Information Science, 2013, 15(6): 793-800.
doi: 10.3724/SP.J.1047.2013.00793 |
[裴韬, 李婷, 周成虎. 时空点过程: 一种新的地学数据模型、分析方法和观察视角. 地球信息科学学报, 2013, 15(6): 793-800.]
doi: 10.3724/SP.J.1047.2013.00793 |
|
[53] | Niemeijer D.Developing indicators for environmental policy: data-driven and theory-driven approaches examined by example. Environmental Science & Policy, 2002, 5(2): 91-103. |
[54] |
Miller H J, Goodchild M F.Data-driven geography. GeoJournal, 2015, 80(4): 449-461.
doi: 10.1007/s10708-014-9602-6 |
[55] |
Li Deren, Wang Shuliang, Shi Wenzhong, et al.On spatial data mining and knowledge discovery. Geomatics and information science of Wuhan university, 2001, 26(6): 491-499.
doi: 10.3321/j.issn:1671-8860.2001.06.005 |
[李德仁, 王树良, 史文中, 等. 论空间数据挖掘和知识发现. 武汉大学学报(信息科学版), 2001, 26(6): 491-499.]
doi: 10.3321/j.issn:1671-8860.2001.06.005 |
|
[56] |
Li Deren, Wang Shuliang, Li Deyi, et al.Theories and technologies of spatial data mining and knowledge discovery. Geomatics and Information Science of Wuhan University, 2002, 27(3): 221-233.
doi: 10.3969/j.issn.1671-8860.2002.03.001 |
[李德仁, 王树良, 李德毅, 等. 论空间数据挖掘和知识发现的理论与方法. 武汉大学学报(信息科学版), 2002, 27(3): 221-233.]
doi: 10.3969/j.issn.1671-8860.2002.03.001 |
|
[57] |
Chen M, Han J, Yu P.Data mining: An overview from a database perspective. IEEE Transactions on Knowledge and data Engineering, 1996, 8(6): 866-883.
doi: 10.1109/69.553155 |
[58] | Džeroski S. Relational Data Mining.Boston, MA: Springer, 2009: 887-911. |
[59] |
Wang Haiqi, Wang Jingfeng, Research on Progress of Spatial Data Mining. Geography and Geo-Information Science, 2005(4): 6-10.
doi: 10.3969/j.issn.1672-0504.2005.04.002 |
[王海起, 王劲峰. 空间数据挖掘技术研究进展. 地理与地理信息科学, 2005(4): 6-10.]
doi: 10.3969/j.issn.1672-0504.2005.04.002 |
|
[60] | Ester M, Kriegel H P, Sander J, et al.A density-based algorithm for discovering clusters in large spatial databases with noise//Proceeding KDD'96 Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, Portland, OR, USA, Aug 02-04, 1996: 226-231. |
[61] | Han J, Lee J G, Kamber M.An overview of clustering methods in geographic data analysis. Geographic data mining and knowledge discovery, 2009, 2: 149-170. |
[62] | Koperski K, Han J, Stefanovic N.An efficient two-step method for classification of spatial data//Proceedings of the 8th International Symposium on Spatial Data Handling (SDH'98), Vancouver, BC, Canada, July 11-15, 1998: 45-54. |
[63] |
Friedl M A, Brodley C E.Decision tree classification of land cover from remotely sensed data. Remote Sensing of Environment, 1997, 61(3): 399-409.
doi: 10.1016/S0034-4257(97)00049-7 |
[64] |
Huang Y, Shekhar S, Xiong H.Discovering colocation patterns from spatial data sets: A general approach. IEEE Transactions on Knowledge and Data Engineering, 2004, 16(12): 1472-1485.
doi: 10.1109/TKDE.2004.90 |
[65] | Koperski K, Han J.Discovery of spatial association rules in geographic information databases//Proceedings of the 4th International Symposium on Large Spatial Databases (SSD 95), Portland, ME, USA, Aug 06-09, 1995: 47-66. |
[66] |
Byrne G F, Crapper P F, Mayo K K.Monitoring land-cover change by principal component analysis of multitemporal Landsat data. Remote Sensing of Environment, 1980, 10(3): 175-184.
doi: 10.1016/0034-4257(80)90021-8 |
[67] |
Novembre J, Johnson T, Bryc K, et al.Genes mirror geography within Europe. Nature, 2008, 456(7218): 98-101.
doi: 10.1038/nature07331 pmid: 18758442 |
[68] |
Beale C M, Lennon J J, Yearsley J M, et al.Regression analysis of spatial data. Ecology Letters, 2010, 13(2): 246-264.
doi: 10.1111/j.1461-0248.2009.01422.x pmid: 20102373 |
[69] |
McMillen D P. Geographically weighted regression: The analysis of spatially varying relationships. American Journal of Agricultural Economics, 2004, 86(2): 554-556.
doi: 10.1111/j.0002-9092.2004.600_2.x |
[70] |
Atkinson P M, Tatnall A R L. Neural networks in remote sensing: Introduction. International Journal of Remote Sensing, 1997, 18(4): 699-709.
doi: 10.1080/014311697218700 |
[71] |
Li X, Yeh A G O. Neural-network-based cellular automata for simulating multiple land use changes using GIS. International Journal of Geographical Information Science, 2002, 16(4): 323-343.
doi: 10.1080/13658810210137004 |
[72] |
Pal M, Mather P M.Support vector machines for classification in remote sensing. International Journal of Remote Sensing, 2005, 26(5): 1007-1011.
doi: 10.1080/01431160512331314083 |
[73] |
Brereton R G, Lloyd G R.Support vector machines for classification and regression. Analyst, 2010, 135(2): 230-267.
doi: 10.1039/b918972f pmid: 20098757 |
[74] |
Gislason P O, Benediktsson J A, Sveinsson J R.Random forests for land cover classification. Pattern Recognition Letters, 2006, 27(4): 294-300.
doi: 10.1016/j.patrec.2005.08.011 |
[75] |
Mutanga O, Adam E, Cho M A.High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm. International Journal of Applied Earth Observation and Geoinformation, 2012, 18: 399-406.
doi: 10.1016/j.jag.2012.03.012 |
[76] |
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553): 436-444.
doi: 10.1038/nature14539 |
[77] |
Moon T K.The expectation-maximization algorithm. IEEE Signal Processing Magazine, 1996, 13(6): 47-60.
doi: 10.1109/79.543975 |
[78] |
Andrieu C, De Freitas N, Doucet A, et al.An introduction to MCMC for machine learning. Machine Learning, 2003, 50(1/2): 5-43.
doi: 10.1023/A:1020281327116 |
[79] |
Yuan J, Zheng Y, Xie X, et al.T-drive: Enhancing driving directions with taxi drivers' intelligence. IEEE Transactions on Knowledge & Data Engineering, 2013, 25(1): 220-232.
doi: 10.1109/TKDE.2011.200 |
[80] |
Dai J, Yang B, Guo C, et al.Personalized route recommendation using big trajectory data. Proceedings of the 2015 IEEE 31st International Conference on Data Engineering (ICDE), Seoul, South Korea, Apr 13-17, 2015: 543-554.
doi: 10.1109/ICDE.2015.7113313 |
[81] |
Vazifeh M M, Santi P, Resta G, et al.Addressing the minimum fleet problem in on-demand urban mobility. Nature, 2018, 557(7706): 534-538.
doi: 10.1038/s41586-018-0095-1 pmid: 29795256 |
[1] | CAO Guangzhong, CHEN Sichuang, LIU Tao. Changing spatial patterns of internal migration to five major urban agglomerations in China [J]. Acta Geographica Sinica, 2021, 76(6): 1334-1349. |
[2] | LIN Liyue, ZHU Yu, LIN Kun, KE Wenqian. Spatial pattern and determinants of migrants' urban housing purchase intention under the binary-locational household arrangements [J]. Acta Geographica Sinica, 2021, 76(6): 1350-1365. |
[3] | GU Hengyu, SHEN Tiyan. Spatial evolution characteristics and driving forces of Chinese highly educated talents [J]. Acta Geographica Sinica, 2021, 76(2): 326-340. |
[4] | ZHANG Xuebo, SONG Jinping, YU Wei, WANG Zhenbo. Formation mechanism of Beijing's jobs-housing spatial relationship based on residents' perception [J]. Acta Geographica Sinica, 2021, 76(2): 383-397. |
[5] | GUAN Haoming, YANG Qingshan, HAO Feilong, FENG Zhangxian. Economic resilience characteristics of Shenyang city based on a perspective of industry-enterprise-space [J]. Acta Geographica Sinica, 2021, 76(2): 415-427. |
[6] | WANG De, LI Dan, FU Yingzi. Employment space of residential quarters in Shanghai: An exploration based on mobile signaling data [J]. Acta Geographica Sinica, 2020, 75(8): 1585-1602. |
[7] | CAO Zhi, LIU Yansui, LI Yurui, WANG Yongsheng. Spatial pattern and its influencing factors of specialized villages and towns in China [J]. Acta Geographica Sinica, 2020, 75(8): 1647-1666. |
[8] | QU Shijin, HU Shougeng, LI Quanfeng. Stages and spatial patterns of urban built-up land transition in China [J]. Acta Geographica Sinica, 2020, 75(7): 1539-1553. |
[9] | MA Haitao. The theoretical construction and network simulation of intercity innovative relationships in knowledge flow space [J]. Acta Geographica Sinica, 2020, 75(4): 708-721. |
[10] | REN Mengyao, XIAO Zuopeng, James J. WANG. Spatial pattern of intercity less-than-truckload logistics networks in China [J]. Acta Geographica Sinica, 2020, 75(4): 820-832. |
[11] | LIU Min, HAO Wei. Spatial distribution and its influencing factors of national A-level tourist attractions in Shanxi Province [J]. Acta Geographica Sinica, 2020, 75(4): 878-888. |
[12] | WU Yaqun, LI Shuangshuang, YAN Junping, WANG Chengbo. Universities and geographical research development in China based on the bibliometrics analysis [J]. Acta Geographica Sinica, 2020, 75(2): 302-317. |
[13] | DENG Hui, BU Fan. Spatial distribution of the Tang Po Lakes upon the Central Hebei Plain during the Northern Song Dynasty [J]. Acta Geographica Sinica, 2020, 75(11): 2332-2345. |
[14] | ZHOU Yang, HUANG Han, LIU Yansui. The spatial distribution characteristics and influencing factors of Chinese villages [J]. Acta Geographica Sinica, 2020, 75(10): 2206-2223. |
[15] | JU Hongrun, ZUO Lijun, ZHANG Zengxiang, ZHAO Xiaoli, WANG Xiao, WEN Qingke, LIU Fang, XU Jinyong, LIU Bin, YI Ling, HU Shunguang, SUN Feifei, TANG Zhanzhong. Methods research on describing the spatial pattern of land use types in China [J]. Acta Geographica Sinica, 2020, 75(1): 143-159. |