[1] | Li Xiaoran, Li Yangbing, Shao Jingan.A study on the response of non-point source pollution to the variation of land use and social economy. Acta Ecologica Sinica, 2016, 36(19): 6050-6061. | [1] | [李潇然, 李阳兵, 邵景安. 非点源污染输出对土地利用和社会经济变化响应的案例研究. 生态学报, 2016, 36(19): 6050-6061.] | [2] | Yin Cai, Liu Miao, Sun Fengyun, et al.Influencing factors of non-point source pollution of watershed based on boosted regression tree algorithm. Chinese Journal of Applied Ecology, 2016, 27(3): 911-919. | [2] | [尹才, 刘淼, 孙凤云, 等. 基于增强回归树的流域非点源污染影响因子分析. 应用生态学报, 2016, 27(3): 911-919.]http://d.wanfangdata.com.cn/Periodical/yystxb201603030 | [3] | Dowd B M, Press D, Huertos M L.Agricultural nonpoint source water pollution policy:The case of California's Central Coast. Agriculture Ecosystems & Environment, 2008, 128(3): 151-161.http://www.sciencedirect.com/science/article/pii/S016788090800176X | [4] | Huang Ning, Wang Hongying, Lin Tao, et al.Regulation framework of watershed landscape pattern for non-point source pollution control based on 'source-sink' theory: A case study in the watershed of Maluan Bay, Xiamen City, China. Chinese Journal of Applied Ecology, 2016, 27(10): 3325-3334. | [4] | [黄宁, 王红映, 吝涛, 等. 基于“源—汇”理论的流域非点源污染控制景观格局调控框架: 以厦门市马銮湾流域为例. 应用生态学报, 2016, 27(10): 3325-3334.]http://d.wanfangdata.com.cn/Periodical/yystxb201610032 | [5] | Li Zhuheng, Liu Miao, Li Chunlin, et al.Non-point source pollution simulation under land use change scenarios in Hun-Taizi River Watershed. Chinese Journal of Applied Ecology, 2016, 27(9): 2891-2898. | [5] | [李铸衡, 刘淼, 李春林, 等. 土地利用变化情景下浑河—太子河流域的非点源污染模拟. 应用生态学报, 2016, 27(9): 2891-2898.]http://d.wanfangdata.com.cn/Periodical/yystxb201609020 | [6] | White M J, Storm D E, Busteed P R, et al.Evaluating nonpoint source critical source area contributions at the watershed scale. Journal of Environmental Quality, 2009, 38(4): 1654-1663.https://www.agronomy.org/publications/jeq/abstracts/38/4/1654 | [7] | Zhou H, Gao C.Assessing the risk of phosphorus loss and identifying critical source areas in the Chaohu Lake Watershed, China. Environmental Management, 2011, 48(5): 1033-1043.http://link.springer.com/10.1007/s00267-011-9743-z | [8] | Zhou Huiping, Gao Chao, Zhu Xiaodong.Identification of critical source areas: An efficient way for agricultural non-point source pollution control. Acta Ecologica Sinica, 2005, 25(12): 3368-3374. | [8] | [周慧平, 高超, 朱晓东. 关键源区识别: 农业非点源污染控制方法. 生态学报, 2005, 25(12): 3368-3374.] | [9] | Sivertun Å, Prange L.Non-point source critical area analysis in the Gisselö Watershed using GIS. Environmental Modelling & Software, 2003, 18(10): 887-898.http://www.sciencedirect.com/science/article/pii/S1364815203001075 | [10] | Endreny T A, Eric F W.Watershed weighting of export coefficients to map critical phosphorous loading areas. Journal of the American Water Resources Association, 2010, 39(1): 165-181.http://onlinelibrary.wiley.com/doi/10.1111/j.1752-1688.2003.tb01569.x/abstract | [11] | Hughes K J, Magette W L, Kurz I.Identifying critical source areas for phosphorus loss in Ireland using field and catchment scale ranking schemes. Journal of Hydrology, 2005, 304(1-4): 430-445.http://linkinghub.elsevier.com/retrieve/pii/S0022169404005104 | [12] | Niraula R, Kalin L, Srivastava P, et al.Identifying critical source areas of nonpoint source pollution with SWAT and GWLF. Ecological Modelling, 2013, 268(23): 123-133.http://linkinghub.elsevier.com/retrieve/pii/S0304380013004006 | [13] | Wang Niu, Lu Haiming, Zhou Ying, et al.Identifying critical source areas of non-point source phosphorus export based on topographic index. Journal of China Hydrology, 2016, 36(2): 12-16. | [13] | [王妞, 陆海明, 邹鹰, 等. 基于地形指数的流域非点源磷素输出关键源区识别. 水文, 2016, 36(2): 12-16.] | [14] | Liu Jie, Ye Jing, Yang Wan, et al.A GIS-based landscape pattern optimization approach for Lake Dianchi Watershed. Journal of Natural Resources, 2012, 27(5): 801-808. | [14] | [刘杰, 叶晶, 杨婉, 等. 基于GIS的滇池流域景观格局优化. 自然资源学报, 2012, 27(5): 801-808.]http://d.wanfangdata.com.cn/periodical_zrzyxb201205009.aspx | [15] | Dong J, Dai W, Shao G, et al.Ecological network construction based on minimum cumulative resistance for the city of Nanjing, China. ISPRS International Journal of Geo-Information, 2015, 4(4): 2045-2060.http://www.mdpi.com/2220-9964/4/4/2045 | [16] | Blazquez-Cabrera S, Gastón A, Beier P, et al.Influence of separating home range and dispersal movements on characterizing corridors and effective distances. Landscape Ecology, 2016, 31(10): 2355-2366.http://link.springer.com/10.1007/s10980-016-0407-5 | [17] | Chen Xin, Peng Jian, Liu Yanxu, et al.Constructing ecological security patterns in Yunfu City based on the framework of importance-sensitivity-connectivity. Geographical Research, 2017, 36(3): 471-484. | [17] | [陈昕, 彭建, 刘焱序, 等. 基于“重要性—敏感性—连通性”框架的云浮市生态安全格局构建. 地理研究, 2017, 36(3): 471-484.]http://d.wanfangdata.com.cn/Periodical/dlyj201703007 | [18] | Wang J, Shao J, Wang D, et al.Identification of the "source" and "sink" patterns influencing non-point source pollution in the Three Gorges Reservoir Area. Journal of Geographical Sciences, 2016, 26(10): 1431-1448.http://link.springer.com/10.1007/s11442-016-1336-6 | [19] | Fu Yonghu.The theory and patterns for designing dematerialization and low environmental risk land-use system in intensive agricultural area [D]. Beijing: China Agricultural University, 2016. | [19] | [付永虎. 高集约化农区投入减量化与低环境风险的土地利用系统设计: 理论与模式[D]. 北京: 中国农业大学, 2016.] | [20] | Djodjic F, Villa A.Distributed, high-resolution modelling of critical source areas for erosion and phosphorus losses. Ambio, 2015, 44(2): 241-251.http://link.springer.com/10.1007/s13280-014-0618-4 | [21] | Liu Jie, Pang Shujiang, He Yangyang, et al.Critical area identification of phosphorus loss based on runoff characteristics in small watershed. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(20): 241-249. | [21] | [刘洁, 庞树江, 何杨洋, 等. 基于小流域产流特征的磷流失关键源区识别. 农业工程学报, 2017, 33(20): 241-249.]研究点分析 | [22] | Soil Survey Office of Guangdong Province. Soil Type Database of Guangdong. Beijing: Science Press, 1996. | [22] | [广东省土壤普查办公室. 广东土种志. 北京: 科学出版社, 1996.] | [23] | Zhang Jiping, Qiao Qing, Liu Chunlan, et al.Ecological land use planning for Beijing City based on the minimum cumulative resistance model. Acta Ecologica Sinica, 2017, 37(19): 6313-6321. | [23] | [张继平, 乔青, 刘春兰, 等. 基于最小累积阻力模型的北京市生态用地规划研究. 生态学报, 2017, 37(19): 6313-6321.] | [24] | Li Kai, Zeng Fantang, Fang Huaiyang, et al.Analysis on nitrogen and phosphorus loading of non-point sources in Shiqiao River Watershed based on L-THIA model. Environmental Science, 2013, 34(11): 4218-4225. | [24] | [李凯, 曾凡棠, 房怀阳, 等. 基于L-THIA模型的市桥河流域非点源氮磷负荷分析. 环境科学, 2013, 34(11): 4218-4225.] | [25] | Chen L, Tian H, Fu B, et al.Development of a new index for integrating landscape patterns with ecological processes at watershed scale. Chinese Geographical Science, 2009, 19(1): 37-45.http://link.springer.com/10.1007/s11769-009-0037-9 | [26] | Li Hengpeng, Liu Xiaozheng, Huang Wenyu.The non-point output of different landuse types in Zhexi hydraulic region of Taihu Basin. Acta Geographica Sinica, 2004, 59(3): 401-408. | [26] | [李恒鹏, 刘晓玫, 黄文钰. 太湖流域浙西区不同土地类型的面源污染产出. 地理学报, 2004, 59(3): 401-408.] | [27] | Zhong Jianbing, Shao Jingan, Yang Yuzhu.Characteristics of non-point source pollution load of crop farming undergoing the background of livelihood diversification. Acta Geographica Sinica, 2016, 71(7): 1201-1214. | [27] | [钟建兵, 邵景安, 杨玉竹. 生计多样化背景下种植业非点源污染负荷演变. 地理学报, 2016, 71(7): 1201-1214.]研究点分析 | [28] | Walter M T, Walter M F, Brooks E S, et al.Hydrologically sensitive areas: Variable source area hydrology implications for water quality risk assessment. Journal of Soil & Water Conservation, 2000, 55(3): 277-284. | [29] | Knaapen J P, Scheffer M, Harms B.Estimating habitat isolation in landscape planning. Landscape & Urban Planning, 1992, 23(1): 1-16.http://www.sciencedirect.com/science/article/pii/016920469290060D | [30] | Deng Jinjie, Chen Liuxin, Yang Chengyun, et al.Significance evaluation of ecological corridor in an highly-urbanized areas: A case study of Shenzhen. Geographical Research, 2017, 36(3): 573-582. | [30] | [邓金杰, 陈柳新, 杨成韫, 等. 高度城市化地区生态廊道重要性评价探索: 以深圳为例. 地理研究, 2017, 36(3): 573-582.] | [31] | Wang Jinliang, Xie Deti, Shao Jing'an, et al. Identification of source-sink risk pattern of agricultural non-point source pollution in cultivated land in Three Gorge Reservoir Area based on accumulative minimum resistance model. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(16): 206-215. | [31] | [王金亮, 谢德体, 邵景安, 等. 基于最小累积阻力模型的三峡库区耕地面源污染源—汇风险识别. 农业工程学报, 2016, 32(16): 206-215.]http://d.wanfangdata.com.cn/Periodical/nygcxb201616029 | [32] | Guo Hongbin, Huang Yixiong, Ye Gongfu, et al.A study on the evaluation and optimization of urban ecological function network in Xiamen. Journal of Natural Resources, 2010, 25(1): 71-79. | [32] | [郭宏斌, 黄义雄, 叶功富, 等. 厦门城市生态功能网络评价及其优化研究. 自然资源学报, 2010, 25(1): 71-79.] | [33] | Ye Yuyao, Su Yongxian, Zhang Hongou, et al.Ecological resistance surface model and its application in urban expansion simulations. Acta Geographica Sinica, 2014, 69(4): 485-496. | [33] | [叶玉瑶, 苏泳娴, 张虹鸥, 等. 生态阻力面模型构建及其在城市扩展模拟中的应用. 地理学报, 2014, 69(4): 485-496.]http://d.wanfangdata.com.cn/Periodical/dlxb201404005 | [34] | Yu Qiqiang, Yue Depeng, Di Y, et al.Layout optimization of ecological nodes based on BCBS model. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(12): 330-336. | [34] | [于强, 岳德鹏, Di Y, 等. 基于BCBS模型的生态节点布局优化. 农业机械学报, 2016, 47(12): 330-336.]http://d.wanfangdata.com.cn/Periodical/nyjxxb201612041 | [35] | Zhang Qibin.Study on landscape pattern construcion optimization scheme of Dengkou County [D]. Beijing Forestry University, 2016. | [35] | [张启斌. 磴口县景观格局建设优化方案研究[D]. 北京: 北京林业大学, 2016.] | [36] | Zhang Caixia, Yang Qinke, Li Rui.Advancement in topographic wetness index and its application. Progress in Geography, 2005, 24(6): 116-123. | [36] | [张彩霞, 杨勤科, 李锐. 基于DEM的地形湿度指数及其应用研究进展. 地理科学进展, 2005, 24(6): 116-123.]http://d.wanfangdata.com.cn/Periodical/dlkxjz200506014 | [37] | Beven K J, Kirkby M J.A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Bulletin, 1979, 24(1): 43-69.http://www.tandfonline.com/doi/abs/10.1080/02626667909491834 | [38] | Thomas I A, Jordan P, Mellander P E, et al.Improving the identification of hydrologically sensitive areas using LiDAR DEMs for the delineation and mitigation of critical source areas of diffuse pollution. Science of the Total Environment, 2016, 556(6): 276-290.https://linkinghub.elsevier.com/retrieve/pii/S0048969716303941 | [39] | Xu Yan, Pan Wenbin.SCS model for watershed runoff calculation in ArcView. Research of Soil and Water Conservation, 2006, 13(4): 176-179. | [39] | [许彦, 潘文斌. 基于ArcView的SCS模型在流域径流计算中的应用. 水土保持研究, 2006, 13(4): 176-179.] | [40] | Cai Yongming, Zhang Keli, Li Shuangcai.Study on the conversion of different soils texture. Acta Pedologica Sinica, 2003, 40(4): 511-517. | [40] | [蔡永明, 张科利, 李双才. 不同粒径制间土壤质地资料的转换问题研究. 土壤学报, 2003, 40(4): 511-517.] | [41] | Chen Lajiao.Simulation of runoff and sediment yield by land use/cover change based on SWAT model: A case study of Malian River in Longdong [D]. Jinhua: Zhejiang Normal University, 2006. | [41] | [陈腊娇. 基于SWAT模型的土地利用/覆被变化产流产沙效应模拟: 以陇东马莲河流域为例[D]. 金华: 浙江师范大学, 2006.] | [42] | He Wei.Study on the application of the SWAT model in the watershed on Loess Plateau [D]. Beijing: Beijing Forestry University, 2007. | [42] | [贺维. SWAT模型在晋西黄土区小流域中的应用研究[D]. 北京: 北京林业大学, 2007.] |
|