[1] | Lohse K A, Brooks P D, McIntosh J C, et al. Interactions between biogeochemistry and hydrologic systems. Annual Review of Environment and Resources, 2009, 34: 65-96.http://www.annualreviews.org/doi/10.1146/annurev.environ.33.031207.111141 | [2] | Gao Y, Yu G R, He N P, et al.Is there an existing healthy threshold for carbon storage in the ecosystem? Environmental Science & Technology, 2012, 46(9): 4687-4688http://pubs.acs.org/doi/abs/10.1021/es301163u | [3] | Manzoni S, Porporato A.Common hydrologic and biogeochemical controls along the soil-stream continuum. Hydrological Process, 2011, 25: 1355-1360.http://doi.wiley.com/10.1002/hyp.v25.8 | [4] | Gao Y, Yu G R, He N P.Equilibration of the terrestrial water, nitrogen, and carbon cycles: Advocating a health threshold for carbon storage. Ecological Engineering, 2013, 57: 366-374http://linkinghub.elsevier.com/retrieve/pii/S0925857413001298 | [5] | Saunders T J, McClain M E, Llerena C A. The biogeochemistry of dissolved nitrogen, phosphorus, and organic carbon along terrestrial-aquatic flowpaths of a montane headwater catchment in the Peruvian Amazon. Hydrological Processes, 2006, 20: 2549-2562.http://doi.wiley.com/10.1002/%28ISSN%291099-1085 | [6] | Valett H M, Thomas S A, Mulholland P J, et al.Endogenous and exogenous control of ecosystem function: N cycling in headwater streams. Ecology, 2008, 89: 3515-3527.http://doi.wiley.com/10.1890/07-1003.1 | [7] | Gao Y, Zhu B, Yu G R, et al.Coupled effects of biogeochemical and hydrological processes on C, N, and P export during extreme rainfall events in a purple soil watershed in southwestern China. Journal of Hydrology, 2014, 511: 692-702http://linkinghub.elsevier.com/retrieve/pii/S0022169414001024 | [8] | Frost P C, Kinsman L E, Johnston C A, et al.Watershed discharge modulates relationships between landscape components and nutrient ratios in stream seston. Ecology, 2009, 90: 1631-1640.http://doi.wiley.com/10.1890/08-1534.1 | [9] | Kalbitz K, Solinger S, Park J H, et al.Controls on the dynamics of dissolved organic matter in soils: A review. Soil Science, 2000, 165: 277-304.https://insights.ovid.com/crossref?an=00010694-200004000-00001 | [10] | Rodriguez-Iturbe I, Porporato A.Ecohydrology of Water-Controlled Ecosystems, Soil Moisture and Plant Dynamics. Cambridge: Cambridge University Press, 2004. | [11] | Schimel J, Balser T C, Wallenstein M.Microbial stress-response physiology and its implications for ecosystem function. Ecology, 2007, 88: 1386-1394.http://doi.wiley.com/10.1890/06-0219 | [12] | Austin A T, Yahdjian L, Stark J M, et al.Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia, 2004, 141: 221-235.http://link.springer.com/10.1007/s00442-004-1519-1 | [13] | Schwinning S, Sala O E.Hierarchy of responses to resource pulses in and semi-arid ecosystems. Oecologia, 2004, 141: 211-220.http://link.springer.com/10.1007/s00442-004-1520-8 | [14] | Augustine D J, McNaughton S J. Temporal asynchrony in soil nutrient dynamics and plant production in a semiarid ecosystem. Ecosystems, 2004, 7: 829-840.http://link.springer.com/10.1007/s10021-004-0253-1 | [15] | Webster J R.Analysis of potassium and calcium dynamics in stream ecosystems on three southern Appalachian watersheds of contrasting vegetation. University of Georgia: Athens, GA; 232, 1975.http://www.researchgate.net/publication/35630115_Analysis_of_potassium_and_calcium_dynamics_in_stream_ecosystems_on_three_southern_Appalachian_watersheds_of_contrasting_vegetation | [16] | Newbold J D, Elwood J W, Oneill R V, et al.Measuring nutrient spiralling in streams. Canadian Journal of Fisheries and Aquatic Sciences, 1981, 38: 860-863.http://www.nrcresearchpress.com/doi/10.1139/f81-114 | [17] | Essington T E, Carpenter S R.Nutrient cycling in lakes and streams: Insights from a comparative analysis. Ecosystems, 2000, 3: 131-143.http://link.springer.com/10.1007/s100210000015 | [18] | Cross W F, Benstead J P, Frost P C, et al.Ecological stoichiometry in freshwater benthic systems: Recent progress and perspectives. Freshwater Biology, 2005, 50: 1895-1912.http://www.blackwell-synergy.com/toc/fwb/50/11 | [19] | Bencala K E, Walters R A.Simulation of solute transport in a mountain pool-and-riffle stream: A transient storage model. Water Resources Research, 1983, 19: 718-724.http://doi.wiley.com/10.1029/WR019i003p00718 | [20] | Aumen N G.Concepts and methods for assessing solute dynamics in stream ecosystems. Journal of the North American Benthological Society, 1990, 9: 95-119.https://www.journals.uchicago.edu/doi/10.2307/1467445 | [21] | Runkel R L.Toward a transport-based analysis of nutrient spiraling and uptake in streams. Limnology and Oceanography-Methods, 2007, 5: 50-62.http://doi.wiley.com/10.4319/lom.2007.5.50 | [22] | Wagener S M, Oswood M W, Schimel J P.Rivers and soils: Parallels in carbon and nutrient processing. Bioscience, 1998, 48: 104-108.https://academic.oup.com/bioscience/article-lookup/doi/10.2307/1313135 | [23] | Fisher S G, Sponseller R A, Heffernan J B.Horizons in stream biogeochemistry: Flowpaths to progress. Ecology, 2004, 85: 2369-2379.http://doi.wiley.com/10.1890/03-0244 | [24] | Ensign S H, Doyle M W.Nutrient spiraling in streams and river networks. Journal of Geophysical Research-Biogeosciences, 2006, 111: G04009.http://onlinelibrary.wiley.com/doi/10.1029/2005JG000114/pdf | [25] | Katul G, Porporato A, Oren R.Stochastic dynamics of plant-water interactions. Annual Review of Ecology Evolution and Systematics, 2007, 38: 767-791.http://www.annualreviews.org/doi/10.1146/annurev.ecolsys.38.091206.095748 | [26] | Rinaldo A, Marani A, Bellin A.On mass response functions. Water Resources Research, 1989, 25: 1603-1617.http://doi.wiley.com/10.1029/WR025i007p01603 | [27] | McDonnell J J, McGuire K, Aggarwal P, et al. How old is streamwater? Open questions in catchment transit time conceptualization, modelling and analysis. Hydrological Processes, 2010, 24: 1745-1754.http://doi.wiley.com/10.1002/hyp.v24%3A12 | [28] | Manzoni S, Porporato A.Soil carbon and nitrogen mineralization: Theory and models across scales. Soil Biology & Biochemistry, 2009, 41: 1355-1379.http://europepmc.org/abstract/AGR/IND44216626 | [29] | Bicknell B R, Imhoff J C, Kittle J L, et al.Hydrologic Simulation Program-FORTRAN (HSPF): User's Manual for Release 10. Report No. EPA/600/R-93/174. Athens, Ga.: U.S. EPA Environmental Research Lab., 1993. | [30] | Bouraoui F, Dillaha T A.ANSWERS-2000: Runoff and sediment transport model. Journal of Environmental Engineering, 2014, 122(6): 493-502. | [31] | Yang D W, Herath S, Musiake K.Development of a geomorphology-based hydrological model for large catchments. Journal of Hydraulic Engineering, 1998, 42: 169-174.http://joi.jlc.jst.go.jp/JST.Journalarchive/prohe1990/42.169?from=CrossRef | [32] | Arheimer B, Brandt M.Watershed modelling of non-point nitrogen pollution from arable land to the Swedish coast in 1985 and 1994. Ecological Engineering, 2000, 14: 389-404.http://linkinghub.elsevier.com/retrieve/pii/S0925857499000634 | [33] | Zhang Y Y, Shao Q X, Ye A Z, et al.Integrated water system simulation by considering hydrological and biogeochemical processes: model development, with parameter sensitivity and autocalibration. Hydrology and Earth System Sciences, 2016, 12(5): 4997-5053.http://adsabs.harvard.edu/abs/2016HESS...20..529Z | [34] | Lindstr?m G, Pers C P, Rosberg R, et al.Development and test of the HYPE (Hydrological Predictions for the Environment) model: A water quality model for different spatial scales. Hydrology Research, 2010, 41(3/4): 295-319.https://iwaponline.com/hr/article/41/3-4/295-319/822 | [35] | Di Toro D M, Fitzpatrick J J, Thomann R V. Water quality analysis simulation program (WASP) andmodel verification program (MVP)-Documentation. Hydroscience Inc., Westwood, N Y, for U.S. EPA, Duluth, MN, Contract No., 1983, 68-01-3872. | [36] | Hamrick J M.A three-dimensional environmental fluid dynamics computer code: Theoretical and computational aspects, Special Report, The College of William and Mary, Virginia Institute of Marine Science, Virginia, USA, 317, 1992. | [37] | Johnsson H, Bergstrom L, Jansson P E, et al.Simulated nitrogen dynamics and losses in a layered agricultural soil. Agriculture, Ecosystems & Environment, 1987, 18(4): 333-356.http://www.sciencedirect.com/science/article/pii/0167880987900995 | [38] | Sharpley A N, Williams J R.EPIC-erosion/productivity impact calculator: 1. Model documentation. Technical Bulletin-United States Department of Agriculture, 1990, 4(4): 206-207. | [39] | Li C, Frolking S, Frolking T A.A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity. Journal of Geophysical Research, 1992, 97(D9): 9759-9776.http://doi.wiley.com/10.1029/92JD00509 | [40] | Tesoriero A J, Duff J H, Wolock D M, et al.Identifying pathways and processes affecting nitrate and orthophosphate inputs to streams in agricultural watersheds. Journal of Environmental Quality, 2009, 38: 1892-1900.https://www.agronomy.org/publications/jeq/abstracts/38/5/1892 | [41] | Manzoni S, Katul G G, Porporato A.Analysis of soil carbon transit times and age distributions using network theories. Journal of Geophysical Research-Biogeosciences, 2009, 114: G04025.http://onlinelibrary.wiley.com/doi/10.1029/2009JG001070/full | [42] | Halliday S J, Wade A J, Skeffington R A, et al.An analysis of long-term trends, seasonality and short-term dynamics in water quality data from Plynlimon, Wales. Science of the Total Environment, 2012, 434: 186-200.http://linkinghub.elsevier.com/retrieve/pii/S0048969711012460 | [43] | Neal C, Reynolds B, Rowland P, et al.High-frequency water quality time series in precipitation and streamflow: From fragmentary signals to scientific challenge. Science of the Total Environment, 2012, 434: 3-12.http://linkinghub.elsevier.com/retrieve/pii/S0048969711013751 | [44] | Bouwman A F, Bierkens M F P, Griffioen J, et al. Nutrient dynamics, transfer and retention along the aquatic continuum from land to ocean: Towards integration of ecological and biogeochemical models. Biogeosciences, 2013, 10: 1-23.http://www.oalib.com/paper/2115219 | [45] | Castellano M J, Kaye J P, Lin H, et al.Linking carbon saturationconcepts to nitrogen saturation and retention. Ecosystems, 2012, 15: 175-187.http://link.springer.com/10.1007/s10021-011-9501-3 | [46] | Liu X J, Duan L, Mo J M, et al.Nitrogen deposition and its ecological impact in China: An overview. Environmental Pollution, 2011, 159: 2251-2264.http://linkinghub.elsevier.com/retrieve/pii/S0269749110003386 | [47] | McLauchlan K K, Williams J J, Craine J M, et al. Changes in global nitrogen cycling during the Holocene epoch. Nature, 2013, 495: 352-355http://www.nature.com/articles/nature11916 | [48] | Wang X L, Wang Y Q, Wang Y J.Use of exotic species during ecological restoration can produce effects that resemble vegetation invasions and other unintended consequences. Ecological Engineering, 2013, 52: 247-251.http://linkinghub.elsevier.com/retrieve/pii/S0925857412003485 | [49] | Wu J, Liu Z M, Qian J Q.Non-linear effect of habitat fragmentation on plant diversity: evidence from a sand dune field in a desertified grassland in northeastern China. Ecological Engineering, 2013, 54: 94-96.http://www.sciencedirect.com/science/article/pii/S0925857413000359 | [50] | Gao Y, He N P, Zhang X Y.Effects of reactive nitrogen deposition on terrestrial and aquatic ecosystems. Ecological Engineering, 2014, 70: 312-318.http://linkinghub.elsevier.com/retrieve/pii/S0925857414002808 | [51] | McLeod A R, Holland M R, Shaw P J A, et al. Enhancement of nitrogen deposition to forest trees exposed to SO2. Nature, 1990, 347: 277-279.http://www.nature.com/doifinder/10.1038/347277a0 | [52] | Fowler D, Smith R, Muller J B A, et al. Long-term trends in sulphur and nitrogen deposition in Europe and the cause of non-linearities//Brimblecombe P, Hara H, Houle D. Acid Rain-deposition to Recovery. Dordrecht, Netherlands: Springer, 2007: 41-47.http://link.springer.com/article/10.1007/s11267-006-9102-x | [53] | Skeffington R A, Hill T J.The effects of a changing pollution climate on throughfall deposition and cycling in a forested area in southern England. Science of the Total Environment, 2012, 434: 28-38.http://linkinghub.elsevier.com/retrieve/pii/S0048969711015026 | [54] | àvila A, Rodà F.Changes in atmospheric deposition and streamwater chemistry over 25 years in undisturbed catchments in a Mediterranean mountain environment. Science of the Total Environment, 2012, 434: 18-27.http://linkinghub.elsevier.com/retrieve/pii/S0048969711013787 | [55] | Jarvie H P, Jickells T D, Skeffington R A, et al.Climate change and coupling of macronutrient cycles along the atmospheric, terrestrial, freshwater and estuarine continuum. Science of the Total Environment, 2012, 434(18): 252-258.http://linkinghub.elsevier.com/retrieve/pii/S0048969712009965 | [56] | Watson A, Nedwell D.Methane production and emission from peat: the influence of anions (sulphate, nitrate) from acid rain. Atmospheric Environment, 1998, 32: 3239-3245.http://linkinghub.elsevier.com/retrieve/pii/S1352231097005013 | [57] | Moss B.Cogs in the endless machine: Lakes, climate change and nutrient cycles: A review. Science of the Total Environment, 2012, 434: 130-142.http://linkinghub.elsevier.com/retrieve/pii/S0048969711009132 | [58] | Evans C, Monteith D, Cooper D.Long-term increases in surface water dissolved organic carbon: Observations, possible causes and environmental impacts. Environmental Pollution, 2005, 137: 55-71.http://linkinghub.elsevier.com/retrieve/pii/S0269749105000540 | [59] | Trimmer M, Grey J, Heppell C M, et al.River bed carbon and nitrogen cycling: State of play and some new directions. Science of the Total Environment, 2012, 434: 143-158.http://linkinghub.elsevier.com/retrieve/pii/S0048969711015038 | [60] | Vitousek P M, Porder S, Houlton B Z, et al.Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications, 2010, 20: 5-15.http://doi.wiley.com/10.1890/08-0127.1 | [61] | Quinton J N, Govers G, Van Oost K, et al.The impact of agricultural soil erosion on biogeochemical cycling. Nature Geoscience, 2010, 3: 311-314.http://www.nature.com/articles/ngeo838 | [62] | Rowe E C, Emmett B A, Frogbrook Z L, et al.Nitrogen deposition and climate effects on soil nitrogen availability: Influences of habitat type and soil characteristics. Science of the Total Environment, 2012, 434: 62-70.http://linkinghub.elsevier.com/retrieve/pii/S0048969711014914 | [63] | Stenberg M, Ulén B, S?derstr?m M, et al.Tile drain losses of nitrogen and phosphorus from fields under integrated and organic crop rotations. A four-year study on a clay soil in southwest Sweden. Science of the Total Environment, 2012, 434: 79-89.http://linkinghub.elsevier.com/retrieve/pii/S0048969711015051 | [64] | Newell-Price J P, Harris D, Taylor M, et al. (ADAS, UK). An inventory of mitigation methods and their effects on diffuse water pollution, greenhouse gas emissions and ammonia emissions from agriculture. Final Report, 2011.http://www.researchgate.net/publication/268200287_An_Inventory_of_Mitigation_Methods_and_Guide_to_their_Effects_on_Diffuse_Water_Pollution_Greenhouse_Gas_Emissions_and_Ammonia_Emissions_from_Agriculture | [65] | Worrall F, Davies H, Burt T, et al.The flux of dissolved nitrogen from the UK: Evaluating the role of soils and land use. Science of the Total Environment, 2012, 434: 90-100.http://linkinghub.elsevier.com/retrieve/pii/S0048969712000782 | [66] | Edwards A C, Withers P J A. Transport and delivery of suspended solids, nitrogen and phosphorus from various sources to freshwaters in the UK. Journal of Hydrology, 2008, 350: 144-153.http://linkinghub.elsevier.com/retrieve/pii/S0022169407006257 | [67] | Jordan P, Melland A R, Mellander P E, et al.The seasonality of phosphorus transfers from land to water: Implications for trophic impacts and policy evaluation. Science of the Total Environment, 2012, 434: 101-109.http://linkinghub.elsevier.com/retrieve/pii/S0048969712002537 | [68] | Withers P J A, Jarvie H P. Delivery and cycling of phosphorus in rivers: A review. Science of the Total Environment, 2008, 400: 379-395.http://linkinghub.elsevier.com/retrieve/pii/S0048969708008139 | [69] | Statham P J.Nutrients in estuaries: An overview and the potential impacts of climate change. Science of the Total Environment, 2012, 434: 213-227.http://linkinghub.elsevier.com/retrieve/pii/S0048969711011715 | [70] | Whitehead P G, Crossman J.Macronutrient cycles and climate change: Key science areas and international perspective. Science of the Total Environment, 2012, 434: 13-17.http://linkinghub.elsevier.com/retrieve/pii/S0048969711009156 | [71] | Diaz R J, Rosenberg R.Spreading dead zones and consequences for marine ecosystems. Science, 2008, 321: 926-929.http://www.sciencemag.org/cgi/doi/10.1126/science.1156401 | [72] | von Bodungen V, Turner K. Science and Integrated Coastal Management. Berlin: Dahlem University Press, 1999. | [73] | Tappin A D, Maier G, Glegg G A, et al.A high resolution temporal study of phytoplankton bloom dynamics in the eutrophic Taw Estuary (SW England). Science of the Total Environment, 2012, 434: 228-239.http://linkinghub.elsevier.com/retrieve/pii/S0048969711009120 | [74] | Carpenter S R, Stanley E H, Van der Zanden M J. State of the world's freshwater ecosystems: Physical, chemical and biological changes. Annual Review of Environment and Resources, 2011, 36, 75-99.http://www.annualreviews.org/doi/10.1146/annurev-environ-021810-094524 | [75] | Andrews J E, Burgess D, Cave R R, et al.Biogeochemical value of managed realignment, Humber Estuary UK. Science of the Total Environment, 2006, 371: 19-30.http://linkinghub.elsevier.com/retrieve/pii/S0048969706006395 | [76] | Adams C A, Andrews J E, Jickells T.Nitrous oxide and methane fluxes vs carbon, nitrogen and phosphorus burial in new intertidal and saltmarsh sediments. Science of the Total Environment, 2012, 434: 240-251.http://linkinghub.elsevier.com/retrieve/pii/S0048969711013738 | [77] | Zhang Wangshou, Li Xuyong, Su Jingjun.Responses of riverine nitrogen export to net anthropogenic nitrogen inputs: A review. Chinese Journal of Applied Ecology, 2014, 25(1): 272-278. | [77] | [张汪寿, 李叙勇, 苏静君. 河流氮输出对流域人类活动净氮输入的响应研究综述. 应用生态学报, 2014, 25(1): 272-278.]http://d.wanfangdata.com.cn/Periodical/yystxb201401037 | [78] | Liu Tingting.Seasonal variation and output of C, N, P in Jialing River [D]. Chongqing: Southwest University, 2009. | [78] | [刘婷婷. 嘉陵江水体中碳、氮、磷季节变化及其输出[D]. 重庆: 西南大学, 2009.] | [79] | Gao Y, He N P, Yu G R, et al.Impact of external nitrogen and phosphorus input between 2006 and 2010 on carbon cycle in China seas. Regional Environmental Change, 2015, 15: 631-641.http://link.springer.com/10.1007/s10113-014-0664-2 | [80] | Invers O, Kraemer G P, Pérez M, et al.Effects of nitrogen addition on nitrogen metabolism and carbon reserves in the temperate seagrass Posidoniaoceanica. Journal of Experimental Marine Biology & Ecology, 2004, 303(1): 97-114.http://www.sciencedirect.com/science/article/pii/S0022098103005343 | [81] | Raven J A, Falkowski P G.Oceanic sinks for atmospheric CO2. Plant Cell & Environment, 1999, 22(6): 741-755.http://agris.fao.org/agris-search/search.do?recordID=US201301098540 | [82] | Larssen T, Duan L, Mulder J.Deposition and leaching of sulfur, nitrogen and calcium in four forested catchments in China: implications for acidification. Environmental Science & Technology, 2011, 45(4): 1192.http://pubs.acs.org/doi/pdf/10.1021/es103426p | [83] | Yu Guirui, Gao Yang, Wang Qiufeng, et al.Discussion on the key processes of carbon-nitrogen-water coupling cycles and biological regulation mechanisms in terrestrial ecosystem. Chinese Journal of Eco-Agriculture, 2013, 21(1): 1-13. | [83] | [于贵瑞, 高扬, 王秋凤, 等. 陆地生态系统碳氮水循环的关键耦合过程及其生物调控机制探讨. 中国生态农业学报, 2013, 21(1): 1-13.]http://d.wanfangdata.com.cn/Periodical/stnyyj201301002 | [84] | Enriquez S, Duarte C M, Sandjensen K.Patterns in decomposition rates among photosynthetic organisms: The importance of detritus C-N-P content. Oecologia, 1993, 94: 457-471.http://link.springer.com/10.1007/BF00566960 | [85] | Berg B, McClaugherty C A. Plant Litter: Decomposition, Humus Formation, Carbon Sequestration. Berlin: Springer, 2003: 286. | [86] | Sterner R W, Elser J J.Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton, NJ, USA: Princeton University Press, 2002. | [87] | Butcher R W.Studies in the ecology of rivers: Vii. The algae of organically enriched waters. Journal of Ecology, 1947, 35: 186-191.https://www.jstor.org/stable/2256507?origin=crossref | [88] | Officer C B, Ryther J H.The possible importance of silicon in marine eutrophication. Marine Ecology Progress Series, 1980, 3: 83-91.http://www.int-res.com/articles/meps/3/m003p083.pdf | [89] | Agren G I, Bosatta E. Theoretical Ecosystem Ecology. Understanding Element Cycles.Cambridge: Cambridge University Press, 1996, 234. | [90] | Cleveland C C, Liptzin D.C:N:P stoichiometry in soil: Is there a "Redfield ratio" for the microbial biomass? Biogeochemistry, 2007, 85: 235-252.http://link.springer.com/10.1007/s10533-007-9132-0 | [91] | Elser J J, Fagan W F, Denno R F, et al.Nutritional constraints in terrestrial and freshwater food webs. Nature, 2000, 408: 578-580.http://www.nature.com/doifinder/10.1038/35046058 | [92] | Cross W F, Benstead J P, Frost P C, et al.Ecological stoichiometry in freshwater benthic systems: Recent progress and perspectives. Freshwater Biology, 2005, 50: 1895-1912.http://www.blackwell-synergy.com/toc/fwb/50/11 | [93] | Dodds W K, Marti E, Tank J L, et al.Carbon and nitrogen stoichiometry and nitrogen cycling rates in streams. Oecologia, 2004, 140: 458-467.http://link.springer.com/10.1007/s00442-004-1599-y | [94] | Manzoni S, Jackson R B, Trofymow J A, et al.The global stoichiometry of litter nitrogen mineralization. Science, 2008, 321: 684-686.http://www.sciencemag.org/cgi/doi/10.1126/science.1159792 | [95] | Manzoni S, Trofymow J A, Jackson R B, et al.Stoichiometric controls dynamics on carbon, nitrogen, and phosphorus in decomposing litter. Ecological Monographs, 2010, 80: 89-106.http://doi.wiley.com/10.1890/09-0179.1 | [96] | Means J E, Macmillan P C, Cromack K.Biomass and nutrient content of Douglas-fir logs and other detrital pools in an old-growth forest, Oregon, USA. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 1992, 22: 1536-1546.http://www.nrcresearchpress.com/doi/10.1139/x92-204 | [97] | Hill A R.Nitrate removal in stream riparian zones. Journal of Environmental Quality, 1996, 25(4): 743-755. | [98] | Matheson F, Nguyen M, Cooper A, et al.Fate of 15N-nitrate in unplanted, planted and harvested riparian wetland soil microcosms. Ecological Engineering, 2002, 19(4): 249-264.http://linkinghub.elsevier.com/retrieve/pii/S0925857402000939 | [99] | Yin Chengqing.The ecological function, protection and utilization of land/inland water ecotones. Acta Ecologica Sinica, 1995, 15(3): 331-335. | [99] | [尹澄清. 内陆水—陆地交错带的生态功能及其保护与开发前景. 生态学报, 1995, 15(3): 331-335.] | [100] | Cooper A B.Nitrate depletion in the riparian zone and stream channel of a small headwater catchment. Hydrobiologia, 1990, 202(1): 13-26.http://link.springer.com/10.1007/BF02208124 | [101] | Gao Y, Yu G R, Yang T T, et al.New insight into global blue carbon estimation under human activity in land-sea interaction area: A case study of China. Earth-Science Reviews, 2016, 159: 36-46.http://linkinghub.elsevier.com/retrieve/pii/S0012825216300824 | [102] | Lowrance R, Leonard R, Sheridan J.Managing riparian ecosystems to control nonpoint pollution. Journal of Soil and Water Conservation, 1985, 40(1): 87-91.http://www.researchgate.net/publication/248564554_Managing_riparian_ecosystems_to_control_nonpoint_pollution | [103] | Hefting M M, Clement J C, Bienkowski P.The role of vegetation and litter in the nitrogen dynamics of riparian buffer zones in Europe. Ecological Engineering, 2005, 24: 465-482.http://linkinghub.elsevier.com/retrieve/pii/S0925857405000200 |
|