Acta Geographica Sinica ›› 2018, Vol. 73 ›› Issue (3): 414-428.doi: 10.11821/dlxb201803003

• Surface Process and Ecological Environment • Previous Articles     Next Articles

Regional inequality, spatial spillover effects and influencing factors of China's city-level energy-related carbon emissions

WANG Shaojian1(),SU Yongxian2,3,ZHAO Yabo4   

  1. 1. Guangdong Provincial Key Laboratory of Urbanization and Geo-simulation, School of Geography and Planning, SunYat-sen University, Guangzhou 510275, China
    2. Guangzhou Institute of Geography, Guangzhou 510070, China
    3. Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangzhou 510070, China
    4. School of Geographical Sciences, Guangzhou University, Guangzhou 510006, China
  • Received:2017-04-21 Online:2018-03-20 Published:2018-03-23
  • Supported by:
    [Foundation: National Natural Science Foundation of China, No.41601151; National Natural Science Foundation of Guangdong Province, No.2016A030310149;;Pearl River S&T Nova Program of Guangzhou]

Abstract:

Carbon emissions are increasing due to human activities related with the energy consumptions for economic development. Thus, attention has been paid to the reduction of the growth of carbon emissions and formulation of policies for addressing climate change. Although most studies have explored the driving forces behind carbon emissions in China, literature lacks studies at the city-level due to a limited availability of statistics on energy consumptions. In this study, based on China's city-level remote sensing carbon emissions from 1992 to 2013, we applied the spatial autocorrelation, spatial Markov-chain transitional matrices, dynamic spatial panel model and Sys-GMM to empirically estimate the key determinants of carbon emissions at the city-level and discuss its spatial spillover effects in consideration of spatiotemporal lag effects and different geographical and economic weighting matrices. Results indicated that the regional inequalities of city-level carbon emissions decreased over time and presented an obvious spatial spillover effect and high-emission "club" agglomeration. In addition, the evolution of the emission pattern has the characteristic of obvious path dependence. Panel data analysis results indicated that there was a significant U-shaped curve that can reflect the relationship between carbon emissions and GDP per capita. In addition, carbon emissions per capita are increasing with economic growth for most cities. High-proportion of secondary industry and extensive growth of investment exerted significantly positive effects on China's city-level carbon emissions. Conversely, rapid population agglomeration, the improvement of technology level, the increase of trade openness and road density play an inhibiting role in carbon emissions. Therefore, in order to reduce carbon emissions, the Chinese government should inhibit the effects of promotion factors and enhance the effects of mitigation factors. Combining with the analysis of results, we argued that optimizing the industrial structure, streamlining the extensive investment, increasing the level of technology and improving the road accessibility are the effective ways to increase energy savings and reduce carbon emissions in China.

Key words: carbon emissions, spatial spillover effect, dynamic spatial panel data model, emission policies, EKC curve, China