Acta Geographica Sinica ›› 2017, Vol. 72 ›› Issue (9): 1606-1620.doi: 10.11821/dlxb201709006
• Orginal Article • Previous Articles Next Articles
Yong ZHANG1(), Shiyin LIU2,3,4
Received:
2016-12-27
Revised:
2017-05-02
Online:
2017-09-30
Published:
2017-09-30
Yong ZHANG, Shiyin LIU. Research progress on debris thickness estimation and its effect on debris-covered glaciers in western China[J].Acta Geographica Sinica, 2017, 72(9): 1606-1620.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Distribution characteristics of debris-covered glaciers in different mountains of China
山系 | 条数 | 面积 (km2) | 所占全部冰川 面积比例(%) | 表碛区域面积(km2) | 表碛区域占表碛型冰川面积比例(%) |
---|---|---|---|---|---|
阿尔金山 | 6 | 30.5 | 10.3 | 2.3 | 7.4 |
阿尔泰山 | 10 | 46.0 | 25.7 | 1.2 | 2.6 |
冈底斯山 | 9 | 28.1 | 2.2 | 2.5 | 9.0 |
横断山 | 26 | 166.5 | 11.8 | 30.0 | 18.0 |
喀喇昆仑山 | 274 | 2249.3 | 37.5 | 188.4 | 8.4 |
昆仑山 | 349 | 2214.6 | 18.9 | 182.3 | 8.2 |
念青唐古拉山 | 170 | 1336.5 | 13.7 | 125.7 | 9.4 |
帕米尔 | 132 | 1094.1 | 56.9 | 191.2 | 17.5 |
祁连山 | 12 | 28.0 | 1.8 | 1.1 | 4.0 |
羌塘高原 | 2 | 26.6 | 1.3 | 0.3 | 1.0 |
唐古拉山 | 7 | 47.1 | 2.6 | 2.3 | 4.9 |
天山 | 578 | 3938.0 | 54.1 | 480.9 | 12.2 |
喜马拉雅山 | 148 | 1769.4 | 27.6 | 285.6 | 16.1 |
总计 | 1723 | 12974.7 | 25.0 | 1493.7 | 11.5 |
Tab. 2
Characteristics of the debris-cover effect in different mountains
区域 | 表碛覆盖比例(%) | 表碛影响 | 表碛厚度(m) | 参考文献 |
---|---|---|---|---|
高加索山 | 8.1~23.0 | 抑制消融为主 | - | [73] |
阿尔泰山 | 3.7~25.8 | 抑制消融为主 | - | [74] |
天山托木尔峰地区 | 7.5~22.0 | 抑制消融为主,2%的区域加速消融 | 0~2.5 | [1, 3, 26] |
兴都库什—喀喇昆仑—喜马拉雅山地区 | 2.0~36.0 | 抑制消融为主 | - | [5] |
Langtang流域 | 19.0 | 抑制消融为主 | - | [32, 56] |
Trambau冰川流域 | 15.1 | 加速消融为主 | - | [25] |
贡嘎山地区 | 13.5 | 10.2%的消融区加速消融,40.8%抑制消融 | 0~1.4 | [8] |
新西兰南阿尔卑斯山区 | 8.0 | 抑制消融为主 | 0~3 | [75] |
Tab. 3
Distribution of debris cover and its effect on five debris-covered glaciers with length >10 km on Mount Gongga of the southeastern Tibetan Plateau
冰川 | 海拔 (m a.s.l.) | 面积 (km2) | 长度 (km) | 表碛面积 比例(%) | 表碛覆盖影响(%) | |
---|---|---|---|---|---|---|
加速 | 抑制 | |||||
海螺沟 | 2990~7556 | 25.7 | 13.1 | 6.4 | 44.0 | 17.0 |
大贡巴 | 3660~6684 | 21.2 | 11.0 | 16.8 | 3.0 | 56.0 |
磨子沟 | 3600~6886 | 26.8 | 11.6 | 1.74 | 2.0 | 11.0 |
燕子沟 | 3680~7556 | 32.2 | 11.7 | 11.7 | 41.0 | 50.1 |
南门关 | 3460~6540 | 16.7 | 10.0 | 20.1 | 17.0 | 35.6 |
[1] |
Zhang Yong, Liu Shiyin, Ding Yongjian, et al.Preliminary study of mass balance on the Keqicar Baxi Glacier on the south slope of Tianshan Mountains. Journal of Glaciology and Geocryology, 2006, 28(4): 477-484.
doi: 10.3969/j.issn.1000-0240.2006.04.003 |
[张勇, 刘时银, 丁永建, 等. 天山南坡科契卡尔巴西冰川物质平衡初步研究. 冰川冻土, 2006, 28(4): 477-484.]
doi: 10.3969/j.issn.1000-0240.2006.04.003 |
|
[2] | Li Jijun, Su Zhen.Glaciers in the Hengduan Mountains. Beijing: Science Press, 1996, 70-110. |
[李吉均, 苏珍. 横断山冰川. 北京: 科学出版社, 1996, 70-110.] | |
[3] | Su Zhen, Zhang Wenjin, Ding Liangfu.Modern glaciers in Tuomur District//Mountaineering and Expedition Term of Chinese Academy of Science. Glacial and Weather in Mt. Tuomuer District, Tianshan. Urumqi: Xinjiang People's Publishing House, 1985: 32-88. |
[苏珍, 张文敬, 丁良福. 托木尔峰地区的现代冰川//中国科学院登山考察队. 天山托木尔峰地区的冰川与气象. 乌鲁木齐: 新疆人民出版社, 1985: 32-88.] | |
[4] | Yang Wei, Yao Tandong, Xu Baiqing, et al.Characteristics of recent temperat glacier fluctuations in the Parlang Zangbo River basin, southeast Tibetan Plateau. Chinese Science Bulletin, 2010, 55(18): 1775-1780. |
[杨威, 姚檀栋, 徐柏青, 等. 近期藏东南帕隆藏布流域冰川的变化特征. 科学通报, 2010, 55(18): 1775-1780.] | |
[5] |
Scherler D, Bookhagen B, Strecker M R.Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nature Geoscience, 2011, 4: 156-159.
doi: 10.1038/ngeo1068 |
[6] | Benn D I, Owen L A. Himalayan glacial sedimentary environments: A framework for reconstructing and dating the former extent of glaciers in high mountains. Quaternary International , 2002, 97-98: 3-25. |
[7] | Liu Shiyin, Zhang Yong, Liu Qiao, et al.Study on the Impact of Climate change on Glacier and Its Risk. Beijing: Science Press, 2017. |
[刘时银, 张勇, 刘巧, 等. 气候变化对冰川影响与风险研究. 北京: 科学出版社, 2017.] | |
[8] |
Zhang Y, Hirabayashi Y, Fujita K, et al.Heterogeneity in supraglacial debris thickness and its role in glacier mass changes of the Mount Gongga. Science China: Earth Sciences, 2016, 59(1): 170-184.
doi: 10.1007/s11430-015-5118-2 |
[9] | Mattson L E, Gardner J S, Young G J.Ablation on debris covered glaciers: An example from the Rakhiot Glacier, Punjab, Himalaya. International Association of Hydrological Sciences Publication, 1993, 218: 289-296. |
[10] |
Nakawo M, Young G J.Field experiments to determine the effect of a debris layer on ablation of glacier ice. Annals of Glaciology, 1981, 2: 85-91.
doi: 10.3189/172756481794352432 |
[11] |
Nakawo M, Young G J.Estimate of glacier ablation under a debris layer from surface temperature and meteorological variables. Journal of Glaciology, 1982, 28(98): 29-34.
doi: 10.1017/S002214300001176X |
[12] | Østrem G.Ice melting under a thin layer of moraine and the existence of ice cores in moraine ridges. Geografiska Annaler, 1959, 41: 228-230. |
[13] |
Benn D I, Bolch T, Hands K, et al.Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards. Earth-Science Reviews, 2012, 114(1/2): 156-174.
doi: 10.1016/j.earscirev.2012.03.008 |
[14] | Kayastha R B, Takeuchi Y, Nakawo M, et al.Practical prediction of ice melting beneath various thickness of debris cover on Khumbu Glacier, Nepal, using a positive degree-day factor. International Association of Hydrological Sciences Publication, 2000, 264: 71-81. |
[15] |
Nicholson L, Benn D I.Calculating ice melt beneath a debris layer using meteorological data. Journal of Glaciology, 2006, 52(178): 463-470.
doi: 10.3189/172756506781828584 |
[16] |
Zhang Y, Fujita K, Liu S, et al.Distribution of debris thickness and its effect on ice melt at Hailuogou Glacier, southeastern Tibetan Plateau, using in situ surveys and ASTER imagery. Journal of Glaciology, 2011, 57(206): 1147-1157.
doi: 10.3189/002214311798843331 |
[17] | Benn D I, Lehmkuhl F. Mass balance and equilibrium-line altitudes of glaciers in high-mountain environments. Quaternary International , 2000, 65- 66 : 15-29. |
[18] |
Liu Weigang, Xiao Cunde, Liu Jingshi, et al.Analyzing the ablation rate characteristics of the Rongbuk Glacier on the Mt. Qomolangma, Central Himalayas. Journal of Glaciology and Geocryology, 2013, 35(4): 814-823.
doi: 10.7522/j.issn.1000-0240.2013.0092 |
[刘伟刚, 效存德, 刘景时, 等. 喜马拉雅山珠穆朗玛峰北坡绒布冰川消融速率特征分析. 冰川冻土, 2013, 35(4): 814-823.]
doi: 10.7522/j.issn.1000-0240.2013.0092 |
|
[19] | Zhang Yong.Study on response of glacier runoff to climate change in representative glacierized catchment, China [D]. Beijing: Graduate School of Chinese Academy of Sciences, 2009. |
[张勇. 典型流域冰川径流对气候变化的响应研究[D]. 北京: 中国科学院研究生院, 2009.] | |
[20] |
Mihalcea C, Brock B W, Diolaiuti G, et al.Using ASTER satellite and ground-based surface temperature measurements to derive supraglacial debris cover and thickness patterns on Miage Glacier. Cold Regions Science and Technology, 2008, 52: 341-354.
doi: 10.1016/j.coldregions.2007.03.004 |
[21] |
Mihalcea C, Mayer C, Diolaiuti G, et al.Spatial distribution of debris thickness and melting from remote-sensing and meteorological data, at debris-covered Baltoro glacier, Karakoram, Pakistan. Annals of Glaciology, 2008, 48: 49-57.
doi: 10.3189/172756408784700680 |
[22] |
Nicholson L, Benn D I.Properties of natural supraglacial debris in relation to modelling sub-debris ice ablation. Earth Surface Processes and Landforms, 2013, 38(5): 490-501.
doi: 10.1002/esp.3299 |
[23] |
Reid T D, Brock B W.An energy-balance model for debris-covered glaciers including heat conduction through the debris layer. Journal of Glaciology, 2010, 56(199): 903-916.
doi: 10.3189/002214310794457218 |
[24] |
Zhang Y, Hirabayashi Y, Liu Q, et al.Glacier runoff and its impact in a highly glacierized catchment in the southeastern Tibetan Plateau: past and future trends. Journal of Glaciology, 2015, 61(228): 713-730.
doi: 10.3189/2015JoG14J188 |
[25] |
Fujita K, Sakai A.Modelling runoff from a Himalayan debris-covered glacier. Hydrology and Earth System Sciences, 2014, 18(7): 2679-2694.
doi: 10.5194/hess-18-2679-2014 |
[26] |
Zhang Y, Liu S, Ding Y.Glacier meltwater and runoff modelling, Keqicar Baqi Glacier, southwestern Tien Shan, China. Journal of Glaciology, 2007, 53(180): 91-98.
doi: 10.3189/172756507781833956 |
[27] |
Immerzeel W W, van Beek L P H, Konz M, et al. Hydrological response to climate change in a glacierized catchment in the Himalayas. Climate Change, 2012, 110: 721-736.
doi: 10.1007/s10584-011-0143-4 pmid: 26005229 |
[28] |
Lutz A F, Immerzeel W W, Shrestha A B, et al.Consistent increase in High Asia's runoff due to increasing glacier melt and precipitation. Nature Climate Change, 2014, 4: 587-592.
doi: 10.1038/nclimate2237 |
[29] |
Röhl K.Characteristics and evolution of supraglacial ponds on debris-covered Tasman Glacier, New Zealand. Journal of Glaciology, 2008, 54(188): 867-880.
doi: 10.3189/002214308787779861 |
[30] |
Sakai A, Fujita K.Formation conditions of supraglacial lakes on debris-covered glaciers in the Himalayas. Journal of Glaciology, 2010, 56(195): 177-181.
doi: 10.3189/002214310791190785 |
[31] |
Han Haidong, Liu Shiyin, Ding Yongjian, et al.Investigation of ice cliffs in the debris-covered area of Koxkar Glacier, Tianshan. Journal of Glaciology and Geocryology, 2006, 28(6): 879-884.
doi: 10.3969/j.issn.1000-0240.2006.06.013 |
[韩海东, 刘时银, 丁永建, 等. 科其喀尔冰川表碛区冰崖形态调查. 冰川冻土, 2006, 28(6): 879-884.]
doi: 10.3969/j.issn.1000-0240.2006.06.013 |
|
[32] | Sakai A, Nakawo M, Fujita K.Melt rate of ice cliffs on the Lirung Glacier, Nepal Himalayas, 1996. Bulletin of Glaciological Research, 1998, 16: 57-66. |
[33] |
Thompson S, Benn D I, Mertes J, et al.Stagnation and mass loss on a Himalayan debris-covered glacier: processes, patterns and rates. Journal of Glaciology, 2016, 62(233): 467-485.
doi: 10.1017/jog.2016.37 |
[34] |
Buri P, Miles E S, Steiner J F, et al.A physically based 3-D model of ice cliff evolution over debris-covered glaciers. Journal of Geophysical Research: Earth Surface, 2016, 121(12): 2471-2493.
doi: 10.1002/2016JF004039 |
[35] | Che Tao, Jin Rui, Li Xin, et al.Glacial lakes variation and the potentially dangerous glacial lakes in the Pumqu Basin of Tibet during the last two decades. Journal of Glaciology and Geocryology, 2004, 26(4): 397-402. |
[车涛, 晋锐, 李新, 等. 近20a来西藏朋曲流域冰湖变化及潜在溃决冰湖分析. 冰川冻土, 2004, 26(4): 397-402.] | |
[36] |
Wang Xin, Liu Shiyin, Guo Wanqin, et al.Hazard assessment of moraine-dammed lake outburst floods in the Himalayas, China. Acta Geographycia Sinica, 2009, 64(7): 782-790.
doi: 10.3321/j.issn:0375-5444.2009.07.002 |
[王欣, 刘时银, 郭万钦, 等. 我国喜马拉雅山区冰碛湖溃决危险性评价. 地理学报, 2009, 64(7): 782-790.]
doi: 10.3321/j.issn:0375-5444.2009.07.002 |
|
[37] | Wang Xin, Liu Shiyin, Mo Hongwei, et al.Expansion of glacial lakes and its implication for climate changes in the Chinese Himalaya. Acta Geographycia Sinica, 2011, 66(7): 895-904. |
[王欣, 刘时银, 莫宏伟, 等. 我国喜马拉雅山区冰湖扩张特征及其气候意义. 地理学报, 2011, 66(7): 895-904.] | |
[38] | Richardson S D, Reynolds J M.Degradation of ice-cored moraine dams: Implications for hazard development. International Association of Hydrological Sciences Publication, 2000, 264: 187-197. |
[39] | Kraus H.An energy balance model for ablation in mountainous areas. International Association of Hydrological Sciences Publication, 1975, 104: 74-82. |
[40] |
Han H, Ding Y, Liu S.A simple model to estimate ice ablation under a thick debris layer. Journal of Glaciology, 2006, 52(179): 528-536.
doi: 10.3189/172756506781828395 |
[41] |
Lejeune Y, Bertrand J-M, Wagnon P, et al.A physically based model of the year-round surface energy and mass balance of debris-covered glaciers. Journal of Glaciology, 2013, 59(214): 327-344.
doi: 10.3189/2013JoG12J149 |
[42] |
Reid T D, Carenzo M, Pellicciotti F, et al.Including debris cover effects in a distributed model of glacier ablation. Journal of Geophysical Research, 2012, 117: D18105. doi: 10.1029/2012JD017795.
doi: 10.1029/2012JD017795 |
[43] |
Rounce D R, Quincey D J, McKinney D C. Debris-covered glacier energy balance model for Imja-Lhotse Shar Glacier in the Everest region of Nepal. The Cryosphere, 2015, 9(6): 2295-2310.
doi: 10.5194/tcd-9-3503-2015 |
[44] |
Nagai H, Fujita K, Nuimura T, et al.Southwest-facing slopes control the formation of debris-covered glaciers in the Bhutan Himalaya. The Cryosphere, 2013, 7(4): 1303-1314.
doi: 10.5194/tc-7-1303-2013 |
[45] | Benn D I, Evans D J.Glaciers and Glaciation. London: Hodder Education, 2010. |
[46] |
Nakawo M, Iwata S, Watanabe O, et al.Processes which distribute supraglacial debris on the Khumbu Glacier, Nepal Himalaya. Annals of Glaciology, 1986, 8: 129-131.
doi: 10.1017/S0260305500001294 |
[47] |
Rounce D R, McKinney D C. Debris thickness of glaciers in the Everest area (Nepal Himalaya) derived from satellite imagery using a nonlinear energy balance model. The Cryosphere, 2014, 8(4): 1317-1329.
doi: 10.5194/tc-8-1317-2014 |
[48] |
Lu Hongli, Han Haidong, Xu Junli, et al.Analysis of the flow features in the ablation zone of the Koxkar Glacier on south slopes of the Tianshan Mountain. Journal of Glaciology and Geocryology, 2014, 36(2): 248-258.
doi: 10.7522/j.issn.1000-0240.2014.0031 |
[鲁红莉, 韩海东, 许君利, 等. 天山托木尔峰科其喀尔巴西冰川表面运动速度特征分析. 冰川冻土, 2014, 36(2): 248-258.]
doi: 10.7522/j.issn.1000-0240.2014.0031 |
|
[49] |
Zhang Y, Fujita K, Liu S, et al.Multi-decadal ice-velocity and elevation changes of a monsoonal maritime glacier: Hailuogou Glacier, China. Journal of Glaciology, 2010, 56(195): 65-74.
doi: 10.3189/002214310791190884 |
[50] |
Juen M, Mayer C, Lambrecht A, et al.Impact of varying debris cover thickness on ablation: A case study for Koxkar Glacier in the Tien Shan. The Cryosphere, 2014, 8(2): 377-386.
doi: 10.5194/tc-8-377-2014 |
[51] |
Huang L, Li Z, Tian B, et al.Recognition of supraglacial debris in the Tianshan Mountains on polarimetric SAR images. Remote Sensing of Environment, 2014, 145: 47-54.
doi: 10.1016/j.rse.2014.01.020 |
[52] | Li Zhen, Liao Jingjuan.Synthetic Aperture Radar Ground Parameters Inversion Models and Methods. Beijing: Science Press, 2011. |
[李震, 廖静娟. 合成孔径雷达地表参数反演模型与方法. 北京: 科学出版社, 2011.] | |
[53] |
Jiang Zongli, Ding Yongjian, Liu Shiyin, et al.A study of the debris-covered glacier limit based on SAR. Advances in Earth Science, 2012, 27(11): 1245-1251.
doi: 10.11867/j.issn.1001-8166.2012.11.1245 |
[蒋宗立, 丁永建, 刘时银, 等. 基于SAR的表碛覆盖型冰川边界定位研究. 地球科学进展, 2012, 27(11): 1245-1251.]
doi: 10.11867/j.issn.1001-8166.2012.11.1245 |
|
[54] |
Schauwecker S, Rohrer M, Huggel C, et al.Remotely sensed debris thickness mapping of Bara Shigri Glacier, Indian Himalaya. Journal of Glaciology, 2015, 61(228): 675-688.
doi: 10.3189/2015JoG14J102 |
[55] | Schauwecker S.Mapping supraglacial debris thickness on mountain glaciers using satellite data: Validation of a new, physically-based method [D]. ETH Zürich, 2012. |
[56] |
Nakawo M, Rana B.Estimate of ablation rate of glacier ice under a supraglacial debris layer. Geografiska Annaler, 1999, 81A: 695-701.
doi: 10.1111/1468-0459.00097 |
[57] |
Paul F, Huggel C, Kääb A.Combining satellite multispectral image data and a digital elevation model for mapping debris-covered glaciers. Remote Sensing of Environment, 2004, 89: 510-518.
doi: 10.1016/j.rse.2003.11.007 |
[58] |
Racoviteanu A E, Paul F, Paup B, et al.Challenges and recommendations in mapping of glacier parameters from space: Results of the 2008 Global Land Ice Measurements from Space (GLIMS) Workshop, Boulder, Colorado, USA. Annals of Glaciology, 2009, 50(53): 53-69.
doi: 10.3189/172756410790595804 |
[59] | Ranzi R, Grossi G, Iacovelli L, et al. Use of multispectral ASTER images for mapping debris-covered glaciers within the GLIMS Project. IEEE International Geoscience and Remote Sensing Symposium , Anchorage, Alaska, 2004, II: 1144-1147. |
[60] |
Suzuki R, Fujita K, Ageta Y.Spatial distribution of the thermal properties on debris-covered glaciers in the Himalayas derived from ASTER data. Bulletin of Glaciological Research, 2007, 24: 13-22.
doi: 10.1016/0032-3861(69)90036-6 |
[61] |
Foster L A, Brock B W, Cutler M E J, et al. A physically based method for estimating supraglacial debris thickness from thermal band remote-sensing data. Journal of Glaciology, 2012, 58: 677-691.
doi: 10.3189/2012JoG11J194 |
[62] |
Lillesand T M, Kiefer R W, Chipman J W.Remote Sensing and Image Interpretation. New York: John Wiley & Sons, 2004.
doi: 10.2307/634969 |
[63] |
Qin Z H, Karnieli A, Berliner P.A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. International Journal of Remote Sensing, 2001, 22(18): 3719-3746.
doi: 10.1080/01431160010006971 |
[64] | Alley R E, Nilsen M J.Algorithm theoretical basis document for: Brightness temperature Version 3.1. Jet Propulsion Laboratory, 2001: 14. |
[65] |
Brenning A, Peña M A, Long S, et al.Thermal remote sensing of ice-debris landforms using ASTER: An example from the Chilean Andes. The Cryosphere, 2012, 6: 367-382.
doi: 10.5194/tc-6-367-2012 |
[66] |
Brock B W, Mihalcea C, Kirkbride M P, et al.Meteorology and surface energy fluxes in the 2005-2007 ablation seasons at the Miage debris-covered glacier, Mont Blanc Massif, Italian Alps. Journal of Geophysical Research, 2010, 115: D09106.
doi: 10.1080/17480270903428789 |
[67] | Takeuchi Y, Kayastha R B, Nakawo M.Characteristics of ablation and heat balance in debris-free and debris-covered areaas on Khumbu Glacier, Nepal Himalayas, in the pre-monsoon season. International Association of Hydrological Sciences Publication, 2000, 264: 53-61. |
[68] |
Yüksel A, Akay A E, Gundogan R.Using ASTER imagery in land use/cover classification of eastern Mediterranean landscapes according to CORINE Land Cover Project. Sensors, 2008, 8: 1237-1251.
doi: 10.3390/s8021287 pmid: 3927522 |
[69] |
Kalnay E, Kanamitsu M, Kistler R, et al.The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 1996, 77: 437-471.
doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 |
[70] |
Kratz D P, Stackhouse Jr P W, Gupta S K, et al. The fast longwave and shortwave flux (FLASHFlux) data product: Single scanner footprint fluxes. Journal of Applied Meteorology and Climatology, 2014, 53: 1059-1079.
doi: 10.1175/JAMC-D-13-061.1 |
[71] |
Noguchi O, Zhang Y, Watanabe S, et al.Estimation of spatial distribution of debris cover on Caucasus Glaciers using ASTER imagery. Journal of Japan Society of Civil Engineers Ser G, 2013, 69(5): 45-51.
doi: 10.2208/jscejer.69.I_45 |
[72] | Liu Qiao, Liu Shiyin, Zhang Yong, et al.Surface ablation features and recent variation of the lower ablation area of the Hailuogou glaciers, Mt. Gongga. Journal of Glaciology and Geocryology, 2011, 33(2): 227-236. |
[刘巧, 刘时银, 张勇, 等. 贡嘎山海螺沟冰川消融区表面消融特征及其近期变化. 冰川冻土, 2011, 33(2): 227-236.] | |
[73] |
Lambrecht A, Mayer C, Hagg W, et al.A comparison of glacier melt on debris-covered glaciers in the northern and southern Caucasus. The Cryosphere, 2011, 5: 525-538.
doi: 10.5194/tc-5-525-2011 |
[74] |
Mayer C, Lambrecht A, Hagg W, et al.Glacial debris cover and melt water production for glaciers in the Altay, Russia. The Cryosphere Discussion, 2011, 5: 401-430.
doi: 10.5194/tcd-5-401-2011 |
[75] |
Anderson B, Mackintosh A.Controls on mass balance sensitivity of maritime glaciers in the Southern Alps, New Zealand: The role of debris cover. Journal of Geophysical Research, 2012, 117: F01003.
doi: 10.1029/2011JF002064 |
[76] |
Nuimura T, Fujita K, Yamaguchi S, et al.Elevation changes of glaciers revealed by multitemporal digital elevation models calibrated by GPS survey in the Khumbu region, Nepal Himalaya, 1992-2008. Journal of Glaciology, 2012, 58(210): 648-656.
doi: 10.3189/2012JoG11J061 |
[77] |
Kääb A, Berthier E, Nuth C, et al.Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature, 2012, 488: 495-498.
doi: 10.1038/nature11324 pmid: 200101 |
[78] | Gardelle J, Berthier E, Arnaud Y, et al. Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999-2011. The Cryosphere, 7(4): 1263-1286. |
[79] |
Ragettli S, Bolch T, Pellicciotti F.Heterogeneous glacier thinning patterns over the last 40 years in Langtang Himal, Nepal. The Cryosphere, 2016, 10(5): 2075-2097.
doi: 10.5194/tc-2016-25 |
[80] | Zhang Y, Hirabayashi Y, Liu S. Catchment-scale reconstruction of glacier mass balance using observations and global climate data: Case study of the Hailuogou catchment , south-eastern Tibetan Plateau. Journal of Hydrology , 2012, 444/445 : 146-160. |
[81] |
Liu Shiyin, Yao Xiaojun, Guo Wanqin, et al.The contemporary glaciers in China based on the Second Chinese Glacier Inventory. Acta Geographycia Sinica, 2015, 70(1): 3-16.
doi: 10.11821/dlxb201501001 |
[刘时银, 姚晓军, 郭万钦, 等. 基于第二次冰川编目的中国冰川现状. 地理学报, 2015, 70(1): 3-16.]
doi: 10.11821/dlxb201501001 |
|
[82] |
Sakai A, Nakawo M, Fujita K.Distribution characteristics and energy balance of ice cliffs on debris-covered glaciers, Nepal Himalaya. Arctic, Antarctic, and Alpine Research, 2002, 34(1): 12-19.
doi: 10.2307/1552503 |
[83] | Sakai A, Takeuchi N, Fujita K, et al.Role of supraglacial ponds in the ablation processes of a debris-covered glacier in the Nepal Himalyas. International Association of Hydrological Sciences Publication, 2000, 264: 119-130. |
[84] |
Benn D I, Wiseman S, Hands K A.Growth and drainage of supraglacial lakes on the debris-mantled Ngozumpa Glacier, Khumbu Himal, Nepal. Journal of Glaciology, 2001, 47(159): 626-638.
doi: 10.3189/172756501781831729 |
[85] |
Steiner J, Pellicciotti F, Buri P, et al.Modeling ice cliff backwasting on a debris covered glacier in the Nepalese Himalayas. Journal of Glaciology, 2015, 61(229): 889-907.
doi: 10.3189/2015JoG14J194 |
[86] |
Miles E S, Pellicciotti F, Willis I C, et al.Refined energy-balance modelling of a supraglacial pond, Langtang Khola, Nepal. Annals of Glaciology, 2016, 57(71): 29-40.
doi: 10.3189/2016AoG71A421 |
[1] | SUN Pingjun, WANG Kewen. Identification and stage division of urban shrinkage in the three provinces of Northeast China [J]. Acta Geographica Sinica, 2021, 76(6): 1366-1379. |
[2] | WEI Shimei, PAN Jinghu. Network structure resilience of cities at the prefecture level and above in China [J]. Acta Geographica Sinica, 2021, 76(6): 1394-1407. |
[3] | YANG Ren, PAN Yuxin. Spatial patterns, formation mechanism and coping strategies of rural vulnerability in China at the county level [J]. Acta Geographica Sinica, 2021, 76(6): 1438-1454. |
[4] | YIN Jiangbin, LI Shangqian, JIANG Lei, CHENG Zhe, HUANG Xiaoyan, LU Gaigai. The spatio-temporal variations and driving factors of non-farm employment growth in contiguous destitute areas of China [J]. Acta Geographica Sinica, 2021, 76(6): 1471-1488. |
[5] | HU Pan, CHEN Bo, SHI Peijun. Spatiotemporal patterns and influencing factors of rainstorm-induced flood disasters in China [J]. Acta Geographica Sinica, 2021, 76(5): 1148-1162. |
[6] | LIU Zhenhai, WANG Shaoqiang, CHEN Bin. Spatial and temporal variations of frozen ground and its vegetation response in the eastern segment of China-Mongolia-Russia economic corridor from 2000 to 2015 [J]. Acta Geographica Sinica, 2021, 76(5): 1231-1244. |
[7] | LIU Shuang, BAI Jie, LUO Geping, LYU Nana, WU Miao. Analysis and prediction of socio-economic water use in the Aral Sea Basin [J]. Acta Geographica Sinica, 2021, 76(5): 1257-1273. |
[8] | MA Zuopeng, LI Chenggu, ZHANG Pingyu. Characteristics, mechanism and response of urban shrinkage in the three provinces of Northeast China [J]. Acta Geographica Sinica, 2021, 76(4): 767-780. |
[9] | HUANG Xiaodong, MA Haitao, MIAO Changhong. Connectivity characteristics for city networks in China based on innovative enterprises [J]. Acta Geographica Sinica, 2021, 76(4): 835-852. |
[10] | WANG Lucang, LIU Haiyang, LIU Qing. China's city network based on Tencent's migration big data [J]. Acta Geographica Sinica, 2021, 76(4): 853-869. |
[11] | XIA Xingsheng, PAN Yaozhong, ZHU Xiufang, ZHANG Jinshui. Monthly calibration and optimization of Ångström-Prescott equation coefficients for agricultural comprehensive area in China [J]. Acta Geographica Sinica, 2021, 76(4): 888-902. |
[12] | LI Zongli, LIU Changming, HAO Xiuping, QIU Bing, WANG Zhonggen. Theoretical basis and priority areas of the interconnected river system network research [J]. Acta Geographica Sinica, 2021, 76(3): 513-524. |
[13] | FAN Zemeng. Spatial identification and scenario simulation of ecotone distribution in China [J]. Acta Geographica Sinica, 2021, 76(3): 626-644. |
[14] | XU Yu, LI Xiubin, XIN Liangjie. Differentiation of scale-farmland transfer rent and its influencing factors in China [J]. Acta Geographica Sinica, 2021, 76(3): 753-763. |
[15] | GU Hengyu, SHEN Tiyan. Spatial evolution characteristics and driving forces of Chinese highly educated talents [J]. Acta Geographica Sinica, 2021, 76(2): 326-340. |