Acta Geographica Sinica ›› 2017, Vol. 72 ›› Issue (7): 1195-1206.doi: 10.11821/dlxb201707006
• Orginal Article • Previous Articles Next Articles
Received:
2017-01-03
Revised:
2017-03-04
Online:
2017-08-07
Published:
2017-08-07
Supported by:
Boyi LIU, Suiji WANG. Planform characteristics and developing level of interchannel wetlands in a gravel-bed anastomosing river, Maqu Reach of the Upper Yellow River[J].Acta Geographica Sinica, 2017, 72(7): 1195-1206.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 3
Geomorphologic parameters used in the assessment for the development of interchannel wetlands clusters
名称 | 面积 Su (hm2) | 湿地数 I (个) | 河间湿地面积占比P (%) | 岸线长度 Li (km) | 岸线密度 Dl (km/km2) | 分汊点个数 N (个) | 分汊点密度 Dn (个/km2) |
---|---|---|---|---|---|---|---|
U1 | 28.58 | 5 | 44.89 | 4.32 | 15.13 | 7 | 24.49 |
U2 | 63.51 | 16 | 65.40 | 8.08 | 12.72 | 33 | 51.96 |
U3 | 250.27 | 22 | 77.32 | 19.50 | 7.79 | 41 | 16.38 |
U4 | 404.15 | 47 | 73.51 | 43.70 | 10.81 | 83 | 20.54 |
U5 | 136.88 | 17 | 74.15 | 14.73 | 10.76 | 29 | 21.19 |
U6 | 44.21 | 15 | 66.02 | 6.93 | 15.67 | 24 | 54.29 |
U7 | 128.55 | 16 | 81.96 | 13.62 | 10.59 | 28 | 21.78 |
U8 | 25.31 | 9 | 37.56 | 3.94 | 15.58 | 12 | 47.42 |
U9 | 345.31 | 53 | 75.80 | 39.65 | 11.48 | 65 | 18.82 |
U10 | 331.36 | 44 | 71.27 | 32.82 | 9.90 | 64 | 19.31 |
U11 | 27.77 | 8 | 40.83 | 3.64 | 13.12 | 11 | 39.61 |
U12 | 163.57 | 28 | 73.58 | 21.67 | 13.25 | 36 | 22.01 |
U13 | 672.94 | 85 | 79.12 | 71.11 | 10.57 | 143 | 21.25 |
U14 | 54.45 | 14 | 50.81 | 7.75 | 14.23 | 28 | 51.42 |
U15 | 170.26 | 27 | 74.86 | 17.73 | 10.41 | 31 | 18.21 |
U16 | 119.13 | 15 | 70.07 | 13.97 | 11.73 | 16 | 13.43 |
U17 | 67.94 | 20 | 50.52 | 10.00 | 14.72 | 31 | 45.63 |
U18 | 1336.17 | 131 | 79.24 | 110.94 | 8.30 | 202 | 15.12 |
U19 | 177.93 | 48 | 63.95 | 24.47 | 13.75 | 56 | 31.47 |
U20 | 95.34 | 41 | 57.09 | 17.20 | 18.04 | 63 | 66.08 |
U21 | 321.44 | 54 | 78.85 | 35.77 | 11.13 | 67 | 20.84 |
U22 | 239.77 | 12 | 73.98 | 14.48 | 6.04 | 15 | 6.26 |
U23 | 6.46 | 2 | 33.25 | 0.82 | 12.66 | 3 | 46.47 |
U24 | 96.14 | 13 | 78.33 | 11.31 | 11.76 | 21 | 21.84 |
U25 | 70.64 | 4 | 71.70 | 5.92 | 8.37 | 7 | 9.91 |
U26 | 243.44 | 18 | 71.57 | 22.62 | 9.29 | 32 | 13.15 |
U27 | 183.42 | 26 | 83.21 | 18.86 | 10.28 | 45 | 24.53 |
U28 | 114.00 | 14 | 55.55 | 11.24 | 9.86 | 22 | 19.30 |
U29 | 260.51 | 29 | 73.11 | 20.06 | 7.70 | 40 | 15.35 |
U30 | 25.73 | 4 | 52.71 | 3.54 | 13.77 | 7 | 27.21 |
Tab. 5
Total area and total number of interchannel wetlands of interchannel wetland clusters with different sizes
面积(hm2) | 描述 | 群体数 | 总面积(hm2) | 总面积占比(%) | 河间湿地数 | 群体数 | 总湿地数占比(%) |
---|---|---|---|---|---|---|---|
< 10 | 小型 | 1 | 6.46 | 0.10 | < 10 | 6 | 5.14 |
10~50 | 5 | 151.59 | 2.44 | 10~20* | 10 | 20.31 | |
50~100 | 6 | 448.02 | 7.22 | 20~50 | 10 | 36.80 | |
100~200 | 中型 | 8 | 1193.74 | 19.24 | 50~100 | 3 | 22.10 |
200~500 | 大型 | 8 | 2396.24 | 38.62 | > 100 | 1 | 15.65 |
> 500 | 巨型 | 2 | 2009.11 | 32.38 |
Tab. 6
Developing level parameters of interchannel wetland clusters with different sizes
面积(hm2) | 河间湿地面积占比P (%) | 岸线密度Dl (km/km2) | 分汊点密度Dn (个/km2) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
均值 | 最小 | 最大 | 均值 | 最小 | 最大 | 均值 | 最小 | 最大 | |||
< 10 | 33.25 | 12.66 | 46.47 | ||||||||
10~50 | 48.40 | 37.56 | 66.02 | 14.65 | 13.12 | 15.67 | 38.60 | 24.49 | 54.29 | ||
50~100 | 62.31 | 50.52 | 78.33 | 13.31 | 8.37 | 18.04 | 41.14 | 9.91 | 66.08 | ||
100~200 | 72.17 | 55.55 | 83.21 | 11.33 | 9.86 | 13.75 | 21.49 | 13.43 | 31.47 | ||
200~500 | 74.46 | 71.27 | 78.85 | 9.27 | 6.04 | 11.48 | 16.33 | 6.26 | 20.84 | ||
> 500 | 79.18 | 79.12 | 79.24 | 9.43 | 8.30 | 10.57 | 18.18 | 15.12 | 21.25 |
[1] |
Schumm S A.Speculations concerning paleohydrologic controls of terrestrial sedimentation. Geological Society of America Bulletin, 1968, 79(11): 1573-1588.
doi: 10.1130/0016-7606(1968)79[1573:SCPCOT]2.0.CO;2 |
[2] |
Miall A D.A review of the braided river depositional environment. Earth Science Reviews, 1977, 13(1): 1-62.
doi: 10.1016/0012-8252(77)90055-1 |
[3] | Rust B R.A classification of alluvial channel systems//Miall A D. Fluvial Sedimentology. Canada Calgary: Canadian Society of Petroleum Geologists, 1978: 187-198. |
[4] |
Smith D G, Smith N D.Sedimentation in anastomosed river systems: Examples from alluvial valley near Bannf, Alberta. Journal of Sedimentary Research, 1980, 50(1): 157-164.
doi: 10.1306/212F7991-2B24-11D7-8648000102C1865D |
[5] |
Wang S, Chen Z, Smith D G.2005. Anastomosing river system along the middle Yangtze River Basin, Southern China. Catena, 60(2): 147-163.
doi: 10.1016/j.catena.2004.11.007 |
[6] | Wang Suiji, Ren Mingda.A new classification of fluvial rivers according to channel planform and sediment characteristics. Acta Sedimentologica Sinica, 1999, 17(2): 240-246. |
[王随继, 任明达. 根据河道形态和沉积物特征的河流新分类. 沉积学报, 1999, 17(2): 240-246.] | |
[7] | Yin Shoupeng, Xie Qingbin, Guan Shourui.Study on anastomosed river with comparative sedimentology. Acta Sedimentologica Sinica, 2000, 18(2): 221-226. |
[尹寿鹏, 谢庆宾, 管守锐. 网状河比较沉积学研究. 沉积学报, 2000, 18(2): 221-226.] | |
[8] |
Makaske B.Anastomosing rivers: A review of their classification, origin and sedimentary products. Earth Science Reviews, 2001, 53(3): 149-196.
doi: 10.1016/S0012-8252(00)00038-6 |
[9] | Wang Suiji, Yin Shoupeng.Discussion on channel patterns of anastomosing and anabranched river. Earth Science Frontiers, 2000, 7(B08): 79-86. |
[王随继, 尹寿鹏. 网状河流的分汊河流的河型归属讨论. 地学前缘, 2000, 7(B08): 79-86.] | |
[10] |
Wang Suiji.Comparison of formation model and channel stability between two different sorts of multiple channel river patterns. Acta Geoscientia Sinica, 2002, 23(1): 89-93.
doi: 10.3321/j.issn:1006-3021.2002.01.016 |
[王随继. 两类多河道河流的形式模式及河道稳定性比较. 地球学报, 2002, 23(1): 89-93.]
doi: 10.3321/j.issn:1006-3021.2002.01.016 |
|
[11] | Wang Suiji.Architectures, relationships between discharges and width/depth ratios of stream cross profiles, and stream powers of anastomosing rivers. Acta Sedimentologica Sinica, 2003, 21(4): 565-570. |
[王随继. 网状河流的构型、流量—宽深比关系和能耗率. 沉积学报, 2003, 21(4): 565-570.] | |
[12] | Wang S, Ni J, Wang G, et al.Hydrological processes of an anastomosing river system on the Zhujiang River delta, China. Journal of Coastal Research, 2004, 43: 124-133. |
[13] |
Miller J R.Development of anastomosing channels in south-central Indiana. Geomorphology, 1991, 4: 221-229.
doi: 10.1016/0169-555X(91)90005-U |
[14] |
Bryant M, Falk P, Paola C.Experimental study of avulsion frequency and rate of deposition. Geology, 1995, 23(4): 365-368.
doi: 10.1130/0091-7613(1995)0232.3.CO;2 |
[15] |
Tabata K K, Hickin E J.Interchannel hydraulic geometry and hydraulic efficiency of the anastomosing Columbia River, southeastern British Columbia, Canada. Earth Surface Processes and Landforms, 2003, 28(8): 837-852.
doi: 10.1002/esp.497 |
[16] | Wang S.Simulation experiment of anastomosing multiple channel formation//Hu C, Tan Y. Proceedings of the Ninth International Symposium on River Sedimentation. Beijing: Tsinghua University Press, 2004: 1747-1753. |
[17] | Abbado D, Slingerland R, Smith N D.Origin of anastomosis in the Upper Columbia River, British Columbia, Canada//Blum M D, Marriott S B, Leclair S F. Fluvial Sedimentology VII. Oxford, UK: Blackwell Publishing Ltd., 2005: 1-15. |
[18] | Jones L S, Schumm S A.Causes of avulsion: An overview//Smith N D, Rogers J. Fluvial Sedimentology VI. Oxford, UK: Blackwell Publishing Ltd., 1999: 171-178. |
[19] |
Rozo M G, Nogueira A C R, Truckenbrodt W. The anastomosing pattern and the extensively distributed scroll bars in the middle Amazon River. Earth Surface Processes and Landforms, 2012, 37(14): 1471-1488.
doi: 10.1002/esp.3249 |
[20] | Brice J C.Channel patterns and terraces of the Loup Rivers in Nebraska. U.S. Geological Survey Professional Paper 422-D, Washington DC, 1964. |
[21] | Friend P F, Sinha R.Braiding and meandering parameters//Best J L, Bristow C S. Braided Rivers. London, UK: Geological Society of London, 1993, 75: 105-111. |
[22] |
Makaske B, Smith D G, Berendsen H J A. Avulsions, channel evolution and floodplain sedimentation rates of the anastomosing upper Columbia River, British Columbia, Canada. Sedimentology, 2002, 49(5): 1049-1071.
doi: 10.1046/j.1365-3091.2002.00489.x |
[23] |
Belletti B, Dufour S, Piégay H.What is the relative effect of space and time to explain the braided river width and island patterns at a regional scale? River Research and Applications, 2015, 31(1): 1-15.
doi: 10.1002/rra.2714 |
[24] |
Hooke J M, Yorke L.Channel bar dynamics on multi-decadal timescales in an active meandering river. Earth Surface Processes and Landforms, 2011, 36(14): 1910-1928.
doi: 10.1002/esp.2214 |
[25] |
Osterkamp W R.Processes of fluvial island formation, with examples from Plum Creek, Colorado and Snake River, Idaho. Wetlands, 1998, 18(4): 530-545.
doi: 10.1007/BF03161670 |
[26] |
Wyrick J R, Klingeman P C.Proposed fluvial island classification scheme and its use for river restoration. River Research and Applications, 2011, 27(7): 814-825.
doi: 10.1002/rra.1395 |
[27] |
Zanoni L, Gurnell A, Drake N, et al.Island dynamics in a braided river from analysis of historical maps and air photographs. River Research and Applications, 2008, 24(8): 1141-1159.
doi: 10.1002/rra.1086 |
[28] |
Church M, Rice S P.Form and growth of bars in a wandering gravel-bed river. Earth Surface Processes and Landforms, 2009, 34(10): 1422-1432.
doi: 10.1002/esp.1831 |
[29] |
Picco L, Mao L, Rainato R, et al.Medium-term fluvial island evolution in a disturbed gravel-bed river (Piave River, Northeastern Italian Alps). Geografiska Annaler: Series A, Physical Geography, 2014, 96(1): 83-97.
doi: 10.1111/geoa.12034 |
[30] |
Mikuś P, Wyżga B, Kaczka R J, et al.Islands in a European mountain river: Linkages with large wood deposition, flood flows and plant diversity. Geomorphology, 2013, 202: 115-127.
doi: 10.1016/j.geomorph.2012.09.016 |
[31] |
Wang Suiji.Analysis of river pattern transformations in the Yellow River Basin. Progress in Geography, 2008, 27(2): 10-17.
doi: 10.11820/dlkxjz.2008.02.002 |
[王随继. 黄河流域河型转化现象初探. 地理科学进展, 2008, 27(2): 10-17.]
doi: 10.11820/dlkxjz.2008.02.002 |
|
[32] |
Li Z, Wang Z, Pan B, et al.Analysis of controls upon channel planform at the First Great Bend of the Upper Yellow River, Qinghai-Tibet Plateau. Journal of Geographical Sciences, 2013, 23(5): 833-848.
doi: 10.1007/s11442-013-1047-1 |
[33] |
Li Zhiwei, Wang Zhaoyin, Yu Guo'an, et al. River pattern transition and its causes along Maqu reach of Yellow River source region. Journal of Sediment Research, 2013, 31(3): 51-58.
doi: 10.3969/j.issn.0468-155X.2013.03.010 |
[李志威, 王兆印, 余国安, 等. 黄河源玛曲河段河型沿程变化及其原因. 泥沙研究, 2013, 31(3): 51-58.]
doi: 10.3969/j.issn.0468-155X.2013.03.010 |
|
[34] |
Yu G, Liu L, Li Z, et al.Fluvial diversity in relation to valley setting in the source region of the Yangtze and Yellow Rivers. Journal of Geographical Sciences, 2013, 23(5): 817-832.
doi: 10.1007/s11442-013-1046-2 |
[35] |
Yu G, Brierley G, Huang H Q, et al.An environmental gradient of vegetative controls upon channel planform in the source region of the Yangtze and Yellow rivers. Catena, 2014, 119: 143-153.
doi: 10.1016/j.catena2014.02.010 |
[36] |
Kidová A, Lehotský M, Rusnák M.Geomorphic diversity in the braided-wandering Belá River, Slovak Carpathians, as a response to flood variability and environmental changes. Geomorphology, 2016, 272: 137-149.
doi: 10.1016/j.geomorph.2016.01.002 |
[37] |
Bertoldi W, Zanoni L, Tubino M.Planform dynamics of braided streams. Earth Surface Processes and Landforms, 2009, 34(4): 547-557.
doi: 10.1002/esp.1755 |
[38] | Qi Dengchen, Li Guangyu.Status, causes and protection counter measures of wetland degradation in Maqu County in the Upper Yellow River. Wetland Science, 2008, 5(4): 341-347. |
[戚登臣, 李广宇. 黄河上游玛曲湿地退化现状、成因及保护对策. 湿地科学, 2008, 5(4): 341-347.] | |
[39] |
Chu Lin, Huang Chong, Liu Gaohuan, et al.Changes in ecological patterns of Maqu alpine wetland in Yellow River Source Area during 2000-2010. Progress in Geography, 2014, 33(3): 326-335.
doi: 10.11820/dlkxjz.2014.03.004 |
[褚琳, 黄翀, 刘高焕, 等. 2000-2010年黄河源玛曲高寒湿地生态格局变化. 地理科学进展, 2014, 33(3): 326-335.]
doi: 10.11820/dlkxjz.2014.03.004 |
|
[40] | Jiang Shizhong.Analysis on variety trend of runoff between Dari and Maqu in the headwater region of Yellow River in the past 50 years. Geographical Research, 2008, 27(1): 221-228. |
[姜世中. 黄河源区达日至玛曲段近50年径流量变化趋势分析. 地理研究, 2008, 27(1): 221-228.] | |
[41] | Liu Hujun, Xu Xianying, Wang Jihe, et al.Type and distribution of aeolian geomorphology at Marqu Region of Upstream Yellow River. Arid Land Geography, 2012, 35(3): 348-357. |
[刘虎俊, 徐先英, 王继和, 等. 黄河上游玛曲地区风沙地貌的类型及其分布. 干旱区地理, 2012, 35(3): 348-357.] | |
[42] |
Singh M, Evans D, Friess D, et al.Mapping above-ground biomass in a tropical forest in Cambodia using canopy textures derived from Google Earth. Remote Sensing, 2015, 7(5): 5057-5076.
doi: 10.3390/rs70505057 |
[43] |
Rice S P, Church M, Wooldridge C L, et al.Morphology and evolution of bars in a wandering gravel-bed river; lower Fraser river, British Columbia, Canada. Sedimentology, 2009, 56(3): 709-736.
doi: 10.1111/j.1365-3091.2008.00994.x |
[44] | Gurnell A M, Petts G E, Hannah D M, et al.Riparian vegetation and island formation along the gravel-bed Fiume Tagliamento, Italy. Earth Surface Processes and Landforms, 2001, 26(1): 31-62. |