Acta Geographica Sinica ›› 2017, Vol. 72 ›› Issue (3): 533-544.doi: 10.11821/dlxb201703013
• Land Use and Environmental Change • Previous Articles Next Articles
Zhenlan JIANG1,2(), Yusheng YANG1, Jinming SHA1(
)
Received:
2016-09-27
Revised:
2016-12-13
Online:
2017-03-15
Published:
2017-03-15
Supported by:
Zhenlan JIANG, Yusheng YANG, Jinming SHA. Application of GWR model in hyperspectral prediction of soil heavy metals[J].Acta Geographica Sinica, 2017, 72(3): 533-544.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Statistical values for measured content of soil heavy metals in Fuzhou City
重金属 | 最小值 (mg·kg-1) | 最大值 (mg·kg-1) | 平均值 (mg·kg-1) | 标准差 (mg·kg-1) | 偏度 (mg·kg-1) | 峰度 (mg·kg-1) | 变异系数 (%) |
---|---|---|---|---|---|---|---|
Cd | 0.01 | 2.94 | 0.74 | 0.38 | 1.49 | 8.21 | 51.35 |
Cu | 5.68 | 94.60 | 23.54 | 14.89 | 1.93 | 5.32 | 63.25 |
Pb | 8.78 | 155.96 | 44.85 | 24.37 | 1.76 | 3.97 | 54.34 |
Cr | 0.75 | 111.55 | 26.13 | 17.85 | 1.69 | 4.53 | 68.31 |
Zn | 1.15 | 383.13 | 101.19 | 54.73 | 1.63 | 5.54 | 54.09 |
Ni | 0.23 | 50.96 | 12.25 | 8.73 | 1.79 | 4.86 | 71.27 |
Tab. 2
Maximum correlation coefficients between soil heavy metal content and spectral variables in Fuzhou City
重金属 | R | FD | SD | RT | RTFD | RTSD | AT | ATFD | ATSD | CR | |
---|---|---|---|---|---|---|---|---|---|---|---|
Cd | 特征波段 相关系数 | 1040 -0.211* | 2420 0.347** | 1990 0.329** | 1040 0.230** | 2420 -0.327** | 1990 -0.352** | 1040 0.220** | 2420 -0.345** | 1250 0.354** | 2170,2190 0.251** |
Cu | 特征波段 相关系数 | 420 -0.478** | 470 -0.426** | 940 0.330** | 380,390,400 0.519** | 510 -0.534** | 450 0.480** | 410 0.511** | 1150 -0.371** | 410 -0.353** | 410 -0.337** |
Pb | 特征波段 相关系数 | 2500 -0.164 | 2490 -0.212* | 1940 -0.240** | 2500 0.182* | 2500 0.234** | 2490 0.237** | 2500 0.171 | 2500 0.222** | 2490 0.218** | 1630 0.190* |
Cr | 特征波段 相关系数 | 520 0.415** | 2230 -0.434** | 1440 0.351** | 360 0.357** | 410 -0.337** | 430 0.319** | 2010 0.411** | 1440 -0.327** | 1440 -0.327** | 2210 0.310** |
Zn | 特征波段 相关系数 | 2240 -0.469** | 390 -0.437** | 440 0.332** | 2150,2160 0.497** | 1050 -0.359** | 2100 0.335** | 2150,2160 0.483** | 2170 -0.313** | 2080 -0.322** | 1480 0.212* |
Ni | 特征波段 相关系数 | 2410 -0.430** | 390 -0.374** | 560 0.300** | 2470 0.438** | 480 -0.399** | 780 0.410** | 2470 0.436** | 600 0.325** | 780 0.294** | 450 -0.293** |
Tab. 3
Results of stepwise linear regression between soil heavy metals and spectral variances in Fuzhou City
重金属 | 模型变量 | 调节R2 | 估计误差 | F | 显著性水平 |
---|---|---|---|---|---|
Cd | 常量, SD_1990, RT_1040 | 0.179 | 0.343 | 15.413 | 0.000 |
Cu | 常量, FD_470, RT_380, RTSD_450 | 0.300 | 12.442 | 19.658 | 0.000 |
Pb | 常量, FD_2490, SD_1940, RTSD_2490, CR_1630 | 0.141 | 22.430 | 7.781 | 0.000 |
Cr | 常量, SD_1440, RTSD_430 | 0.226 | 15.685 | 20.170 | 0.000 |
Zn | 常量, RT_2150, RTFD_1050 | 0.312 | 45.235 | 30.706 | 0.000 |
Ni | 常量, RT_2470, RTFD_480 | 0.180 | 7.874 | 15.427 | 0.000 |
Tab. 4
Prediction accuracy of OLS and GWR regression models in Fuzhou City
重金属 | 建模样本 | 验证样本 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
AIC | 调节R2 | 残差平方和 | 调节R2 | 均方根误差 | |||||||
OLS | GWR | OLS | GWR | OLS | GWR | OLS | GWR | OLS | GWR | ||
Cd | 75.807 | 78.544 | 0.181 | 0.196 | 10.986 | 10.330 | 0.167 | 0.192 | 0.302 | 0.294 | |
Cu | 730.248 | 698.162 | 0.323 | 0.649 | 13758.666 | 4141.423 | 0.217 | 0.613 | 11.658 | 8.192 | |
Pb | 1204.227 | 1199.618 | 0.141 | 0.216 | 64334.784 | 55866.254 | 0.083 | 0.213 | 24.700 | 22.884 | |
Cr | 742.016 | 720.703 | 0.266 | 0.716 | 21484.197 | 5441.275 | 0.090 | 0.396 | 15.487 | 12.463 | |
Zn | 925.785 | 916.964 | 0.281 | 0.525 | 194869.446 | 92018.520 | 0.247 | 0.456 | 39.781 | 31.934 | |
Ni | 602.693 | 605.455 | 0.212 | 0.219 | 5406.102 | 5179.912 | 0.094 | 0.117 | 7.392 | 7.292 |
Tab. 5
Test of spatial non-stationarity of the relationship between soil heavy metal and variables in Fuzhou City
重金属 | 常量 | 变量1 | 变量2 | 变量3 | 变量4 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
UQ-LQ | SE | UQ-LQ | SE | UQ-LQ | SE | UQ-LQ | SE | UQ-LQ | SE | |||||
Cd | 0.04 | 0.18 | 3286.93 | 2440.54 | 0.03 | 0.09 | ||||||||
Cu | 27.71 | 11.23 | 24251.91 | 10698.67 | 2.51 | 0.82 | 15446.67 | 3914.22 | ||||||
Pb | 252.90 | 287.82 | 1035.71 | 978.55 | 323742.57 | 155253.07 | 1329.4 | 1314.67 | 234.69 | 289.44 | ||||
Cr | 15.78 | 3.60 | 277645.03 | 51064.04 | 6360.06 | 1981.41 | ||||||||
Zn | 153.11 | 31.68 | 80.30 | 17.37 | 17108.15 | 6167.21 | ||||||||
Ni | 6.39 | 5.03 | 2.39 | 2.32 | 61.63 | 70.43 |
[1] |
Wang Q R, Dong Y, Cui Y, et al.Instances of soil and crop heavy metal contamination in China. Soil and Sediment Contamination, 2001, 10: 497-510.
doi: 10.1080/20015891109392 |
[2] |
Wei B, Yang L.A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchemical Journal, 2010, 94(2): 99-107.
doi: 10.1016/j.microc.2009.09.014 |
[3] |
Li Z, Ma Z, van der Kuijp T J, et al. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Science of the Total Environment, 2014, 468: 843-853.
doi: 10.1016/j.scitotenv.2013.08.090 |
[4] | Zhang X Y, Zhong T Y, Liu M, et al.Chromium occurrences in arable soil and its influence on food production in China. Environiment Earth Sciences, 2016, 75: 257. |
[5] | The State Council of China, 2016-05-31. |
[国务院. , 2016-05-31.] | |
[6] |
Choe E, van der Meer F, van Ruitenbeek F, et al. Mapping of heavy metal pollution in stream sediments using combined geochemistry, field spectroscopy, and hyperspectral remote sensing: A case study of the Rodalquilar mining area, SE Spain. Remote Sensing of Environment, 2008, 112: 3222-3233.
doi: 10.1016/j.rse.2008.03.017 |
[7] |
Liu Y, Pan Y.Research of soil cadmium pollution grading evaluation based on hyperspectral technology. Ecology and Environmental Sciences, 2012, 21: 1361-1365.
doi: 10.1007/s11783-011-0280-z |
[8] |
Shi T, Chen Y, Liu Y, et al.Visible and near-infrared reflectance spectroscopy: An alternative for monitoring soil contamination by heavy metals. Journal of Hazardous Materials, 2014, 265: 166-176.
doi: 10.1016/j.jhazmat.2013.11.059 pmid: 24361494 |
[9] | Wen Jianting, Zhang Xia, Zhang Bing, et al.A study of band selection method for retrieving soil lead content with hyperspectral remote sensing data. Advances in Earth Science, 2010, 25(6): 625-629. |
[温健婷, 张霞, 张兵, 等. 土壤铅含量高光谱遥感反演中波段选择方法研究. 地球科学进展, 2010, 25(6): 625-629.] | |
[10] |
Lian S, Jian J, Tan D J, et al.Estimate of heavy metals in soil and streams using combined geochemistry and field spectroscopy in Wansheng mining area, Chongqing, China. International Journal of Applied Earth Observation and Geoinformation, 2015, 34: 1-9.
doi: 10.1016/j.jag.2014.06.013 |
[11] |
Tan K, Ye Y Y, Cao Q, et al.Estimation of arsenic contamination in reclaimed agricultural soils using reflectance spectroscopy and ANFIS model. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7: 2540-2546.
doi: 10.1109/JSTARS.2014.2311471 |
[12] |
Kooistra L, Wehrens R, Leuven R S E W, et al. Possibilities of visible-near-infrared spectroscopy for the assessment of soil contamination in river floodplains. Analytica Chimica Acta, 2001, 446: 97-105.
doi: 10.1016/S0003-2670(01)01265-X |
[13] |
Wu Y Z, Chen J, Wu X M, et al.Possibilities of reflectance spectroscopy for the assessment of contaminant elements in suburban soils. Applied Geochemistry, 2005, 20: 1051-1059.
doi: 10.1016/j.apgeochem.2005.01.009 |
[14] |
Stazi S R, Antonucci F, Pallottino F, et al.Hyperspectral visible-near infrared determination of arsenic concentration in soil. Communications in Soil Science and Plant Analysis, 2014, 45: 2911-2920.
doi: 10.1080/00103624.2014.954716 |
[15] |
Liu M, Liu X, Wu M, et al.Integrating spectral indices with environmental parameters for estimating heavy metal concentrations in rice using a dynamic fuzzy neural-network model. Computers & Geosciences, 2011, 37(10): 1642-1652.
doi: 10.1016/j.cageo.2011.03.009 |
[16] |
Liu M L, Liu X N, Ding W C, et al.Monitoring stress levels on rice with heavy metal pollution from hyperspectral reflectance data using wavelet-fractal analysis. International Journal of Applied Earth Observation and Geoinformation. 2011, 13: 246-255.
doi: 10.1016/j.jag.2010.12.006 |
[17] |
Liu M L, Liu X N, Wu L, et al.Wavelet-based detection of crop zinc stress assessment using hyperspectral reflectance. Computers & Geosciences, 2011, 37: 1254-1263.
doi: 10.1016/j.cageo.2010.11.019 |
[18] |
Wang J J, Cui L J, Gao W X, et al.Prediction of low heavy metal concentrations in agricultural soils using visible and near-infrared reflectance spectroscopy. Geoderma, 2014, 216: 1-9.
doi: 10.1016/j.geoderma.2013.10.024 |
[19] | Lü Jie, Hao Ningyan, Cui Xiaolin.Inversion model for copper content in farmland of tailing area based on visible-near infrared reflectance spectroscopy. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(9): 265-270. |
[吕杰, 郝宁燕, 崔晓临. 利用可见光近红外的尾矿区农田土壤Cu含量反演. 农业工程学报, 2015, 31(9): 265-270.] | |
[20] |
Yu H. Ni S J, He Z W, et al.Analysis of the spatial relationship between heavy metals in soil and human activities based on landscape geochemical interpretation. Journal of Geochemical Exploration, 2014, 146: 136-148.
doi: 10.1016/j.gexplo.2014.08.010 |
[21] |
Modis K, Vatalis K I, Sachanidis C.Spatiotemporal risk assessment of soil pollution in a lignite mining region using a Bayesian maximum entropy (BME) approach. International Journal of Coal Geology, 2013, 112: 173-179.
doi: 10.1016/j.coal.2012.11.015 |
[22] |
Yang Yong, Wu J P, Christakos G.Prediction of soil heavy metal distribution using spatiotemporal kriging with trend model. Ecological Indicators, 2015, 56: 125-133.
doi: 10.1016/j.ecolind.2015.03.034 |
[23] |
Liu Y, Ma Z W, Lv J S, et al.Identifying sources and hazardous risks of heavy metals in topsoils of rapidly urbanizing East China. Journal of Geographical Sciences, 2016, 26(6): 735-749.
doi: 10.1007/s11442-016-1296-x |
[24] |
Xia Zenglu.Regional differentiation of critical concentration and environmental capacity of some heavy metals for the main soil types in China. Acta Geographica Sinica, 1993, 48(4): 297-303.
doi: 10.11821/xb199304001 |
[夏增禄. 中国主要类型土壤若干重金属临界含量和环境容量的区域分异. 地理学报, 1993, 48(4): 297-303.]
doi: 10.11821/xb199304001 |
|
[25] | Liu Qiongfeng, Li Mingde, Duan Jiannan, et al.Analysis on influence factors of soil Pb and Cd in agricultural soil of Changsha suburb based on geographically weighted regression model. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(3): 225-234. |
[刘琼峰, 李明德, 段建南, 等. 农田土壤铅、镉含量影响因素地理加权回归模型分析. 农业工程学报, 2013, 29(3): 225-234.] | |
[26] | Yang Yong, Mei Yang, Zhang Chutian, et al.Spatio-temporal modeling and prediction of soil heavy metal based on spatio-temporal Kriging. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(21): 249-255. |
[杨勇, 杨梅, 张楚天, 等. 基于时空克里格的土壤重金属时空建模与预测. 农业工程学报, 2014, 30(21): 249-255.] | |
[27] |
Araujo S R, Dematte J A M, Vicente S. Soil contaminated with chromium by tannery sludge and identified by vis-NIR-mid spectroscopy techniques. International Journal of Remote Sensing, 2014, 35: 3579-3593.
doi: 10.1080/01431161.2014.907940 |
[28] |
Huo X N, Zhang W W, Sun D F, et al.Spatial pattern analysis of heavy metals in Beijing agricultural soils based on spatial autocorrelation statistics. International Journal of Environmental Research and Public Health, 2011, 8: 2074-2089.
doi: 10.3390/ijerph8062074 pmid: 3138012 |
[29] |
Jin M, Liu X N, Wu L, et al.An improved assimilation method with stress factors incorporated in the WOFOST model for the efficient assessment of heavy metal stress levels in rice. International Journal of Applied Earth Observation and Geoinformation, 2015, 41: 118-129.
doi: 10.1016/j.jag.2015.04.023 |
[30] |
Landajo A, Arana G, de Diego A, et al. Analysis of heavy metal distribution in superficial estuarine sediments (estuary of Bilbao, Basque Country) by open-focused microwave-assisted extraction and ICP-OES. Chemosphere, 2004, 56: 1033-1041.
doi: 10.1016/j.chemosphere.2004.06.005 pmid: 15276716 |
[31] |
Fortheringham A S, Chanrlton M, Brunsdon C.The geographically of parameter space: An investigation of spatial nonstationarity. International Journal of Geographical Information Systems, 1996, 10: 605-627.
doi: 10.1080/026937996137909 |
[32] |
Jaber S M, Al-Qinna M I. Global and local modeling of soil organic carbon using Thematic Mapper data in a semi-arid environment. Arabian Journal of Geosciences, 2015, 8: 3159-3169.
doi: 10.1007/s12517-014-1370-6 |
[33] |
Wang K, Zhang C R, Li W D.Predictive mapping of soil total nitrogen at a regional scale: A comparison between geographically weighted regression and cokriging. Applied Geography, 2013, 42: 73-85.
doi: 10.1016/j.apgeog.2013.04.002 |
[34] |
Wang K, Zhang C R, Li W D, et al.Mapping soil organic matter with limited sample data using geographically weighted regression. Journal of Spatial Science, 2014, 59: 91-106.
doi: 10.1080/14498596.2013.812024 |
[35] |
Wu Mingzhu, Li Xiaomei, Sha Jinming.Spectral inversion models for prediction of total chromium content in subtropical soil. Spectroscopy and Spectral Analysis, 2014, 34(6): 1660-1666.
doi: 10.3964/j.issn.1000-0593(2014)06-1660-07 |
[吴明珠, 李小梅, 沙晋明. 亚热带土壤铬元素的高光谱响应和反演模型. 光谱学与光谱分析, 2014, 34(6): 1660-1666.]
doi: 10.3964/j.issn.1000-0593(2014)06-1660-07 |
|
[36] | Bureau of Environmental Protection of P. R.China. Environmental Quality Standard for Soils. GB/T15618-1995: 1-5. |
[国家环境保护局, 土壤环境质量标准. 中华人民共和国国家标准, GB/T15618-1995: 1-5.] | |
[37] | Wang Ku.Spatial estimation of soil organic matter by using Geographically Weighted Regression model. Chinese Journal of Soil Science, 2013, 44(1): 21-28. |
[王库. 基于地理权重回归模型的土壤有机质空间预测. 土壤通报, 2013, 44(1): 21-28.] |
[1] | ZHOU Yang, LI Xunhuan, TONG Chunyang, HUANG Han. The geographical pattern and differentiational mechanism of rural poverty in China [J]. Acta Geographica Sinica, 2021, 76(4): 903-920. |
[2] | SUN Caizhi, MA Qifei, ZHAO Liangshi. Analysis of driving mechanism based on a GWR model of green efficiency of water resources in China [J]. Acta Geographica Sinica, 2020, 75(5): 1022-1035. |
[3] | TU Jianjun,TANG Siqi,ZHANG Qian,WU Yue,LUO Yunchao. Spatial heterogeneity of the effects of mountainous city patternon catering industry location [J]. Acta Geographica Sinica, 2019, 74(6): 1163-1177. |
[4] | Jiangbo GAO, Kewei JIAO, Shaohong WU. Revealing the climatic impacts on spatial heterogeneity of NDVI in China during 1982-2013 [J]. Acta Geographica Sinica, 2019, 74(3): 534-543. |
[5] | YANG Siqi,XING Xiaoyue,DONG Weihua,LI Shuaipeng,ZHAN Zhicheng,WANG Quanyi,YANG Peng,ZHANG Yi. The spatio-temporal response of influenza A (H1N1) to meteorological factors in Beijing [J]. Acta Geographica Sinica, 2018, 73(3): 460-473. |
[6] | WEN Qi,SHI Linna,MA Caihong,WANG Yongsheng. Spatial heterogeneity of multidimensional poverty at the village level: Loess Plateau [J]. Acta Geographica Sinica, 2018, 73(10): 1850-1864. |
[7] | EZIZ Mamattursun, MAMUT Ajigul, MOHAMMAD Anwar, Guofei MA. Assessment of heavy metal pollution and its potential ecological risks of farmland soils of oasis in Bosten Lake Basin [J]. Acta Geographica Sinica, 2017, 72(9): 1680-1694. |
[8] | Wei SHUI, Zhichun CHEN, Jieming DENG, Yajing LI, Qianfeng WANG, Wulin WANG, Yiping CHEN. Evaluation of urban high temperature vulnerability of coupling adaptability in Fuzhou, China [J]. Acta Geographica Sinica, 2017, 72(5): 830-849. |
[9] | Weixuan SONG, Ning MAO, Peiyang CHEN, Yaqi YUAN, Yi WANG. Coupling mechanism and spatial-temporal pattern of residential differentiation from the perspective of housing prices:A case study of Nanjing [J]. Acta Geographica Sinica, 2017, 72(4): 589-602. |
[10] | Jiaming LI, Dadao LU, Chengdong XU, Yang LI, Mingxing CHEN. Spatial heterogeneity and its changes of population on the two sides of Hu Line [J]. Acta Geographica Sinica, 2017, 72(1): 148-160. |
[11] | Jian PENG, Weixiong DANG, Yanxu LIU, Minli ZONG, Xiaoxu HU. Review on landscape ecological risk assessment [J]. Acta Geographica Sinica, 2015, 70(4): 664-677. |
[12] | FANG Chuanglin, MA Haitao, WANG Zhenbo, LI Guangdong. Comprehensive assessment and spatial heterogeneity of the construction of innovative cities in China [J]. Acta Geographica Sinica, 2014, 69(4): 459-473. |
[13] | WEN Zhaofei, ZHANG Shuqing, BAI Jing, DING Changhong, ZHANG Ce. Agricultural Landscape Spatial Heterogeneity Analysis and Optimal Scale Selection: An Example Applied to Sanjiang Plain [J]. Acta Geographica Sinica, 2012, 67(3): 346-356. |
[14] | CHE Qianjin, DUAN Xuejun, GUO Yao, WANG Lei, CAO Youhui. Urban Spatial Expansion Process, Pattern and Mechanism in Yangtze River Delta [J]. Acta Geographica Sinica, 2011, 66(4): 446-456. |
[15] | FANG Chuanglin, SONG Jitao, ZHANG Qiang, LI Ming. The Formation, Development and Spatial Heterogeneity Patterns for the Structures System of Urban Agglomerations in China [J]. Acta Geographica Sinica, 2005, 60(5): 827-840. |