Acta Geographica Sinica ›› 2017, Vol. 72 ›› Issue (3): 444-456.doi: 10.11821/dlxb201703007
• Climate Change and Surface Processes • Previous Articles Next Articles
Jiansheng WU1,2(), Puhua ZHANG1
Received:
2016-09-12
Revised:
2016-12-13
Online:
2017-03-15
Published:
2017-03-15
Supported by:
Jiansheng WU, Puhua ZHANG. The effect of urban landscape pattern on urban waterlogging[J].Acta Geographica Sinica, 2017, 72(3): 444-456.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Overview of data used in this study
数据名称 | 数据说明 | 数据来源 |
---|---|---|
深圳市2014年“5·11”暴雨期间内涝点数据 | 共278个 | 深圳市防汛防旱防风指挥部 |
深圳市2013年土地利用数据 | 矢量数据 | 深圳市政府 |
深圳市2013年遥感影像数据(LANDSAT8) | 时间:2013/10/5,2013/10/28 轨道号:121/044,122/044 | 美国地质勘探局(USGS)网站 |
深圳市2014年5月11日日降雨量数据 | 50个气象监测站点记录数据 | 深圳市气象局网站 |
深圳市DEM数据 | 分辨率30 m×30 m | 地理空间数据云 |
深圳市雨水管网数据 | 雨水管线和雨水口分布数据 | 深圳市政府 |
Tab. 2
Overview of landscape indices used in this study
尺度水平 | 指数名称 | 单位 | 范围 | 表征含义 |
---|---|---|---|---|
类型 水平 | 最大斑块面积比例(LPI) | % | 0<LPI≤100 | 表征景观类型的优势度。 |
斑块聚集度指数(COHESION) | 无 | 0<COHESION<100 | 反映同一景观类型的斑块聚集程度,其值越高,斑块内聚度越高。 | |
景观破碎度指数(DIVISION) | 无 | 0≤DIVISION<1 | 反映同一景观类型的斑块分散程度,其值等于0时,该景观类型是由单一的斑块组成的;趋近于1时,该景观类型是由多个小斑块组成的。 | |
景观 水平 | 蔓延度(CONTAG) | % | 0<CONTAG≤100 | 描述不同景观类型的团聚程度或延展趋势。一般来说,高蔓延度值说明景观中的某种优势景观类型形成了良好的连接性;反之则表明景观是具有多种要素的密集格局,景观的破碎化程度较高。 |
香农多样性指(SHDI) | 无 | 0≤SHDI | 表征景观整体的复杂程度,其值越大,景观整体的复杂程度越高。 |
Tab. 3
The classification and description of the independent variables
变量类别 | 变量子类别 | 变量名称 | 变量描述 | |
---|---|---|---|---|
土地利用类型 | 4大类 | 绿地,建设用地,水体,裸地 | 每种土地利用类型在所在小流域的面积比例 | |
16小类 | 耕地,园地,林地,草地,商服用地,工矿仓储用地,住宅用地,公共用地,公园绿地,特殊用地,交通运输用地,河流水域,其他水域,水利设施用地,设施农用地,荒地 | 每种土地利用类型在所在小流域的面积比例 | ||
景观格局指数 | 4大类 | 绿地,建设用地,水体,裸地 | 土地利用类型_景观格局指数 (LPI,COHESION,DIVISION) 4大类_景观格局指数(CONTAG,SHDI) | 各小流域类型水平及景观水平上的景观格局指数 |
16小类 | 耕地,园地,林地,草地,商服用地,工矿仓储用地,住宅用地,公共用地,公园绿地,特殊用地,交通运输用地,河流水域,其他水域,水利设施用地,设施农用地,荒地 | 土地利用类型_景观格局指数 (LPI,COHESION,DIVISION) 16小类_景观格局指数 (CONTAG,SHDI) | 各小流域类型水平及景观水平上的景观格局指数 | |
其他 变量 | 平均植被覆盖度,平均不透水率,平均日降雨量,平均高程,平均起伏度,平均粗糙度,雨水管网线密度,雨水口点密度 | 以小流域为单位进行统计 |
Tab. 4
Variables closely related with waterlogging point density (α=0.01)
变量类别 | 变量子类别 | 变量名称(r) | |
---|---|---|---|
土地利用类型 | 4大类 | 绿地(-0.516),建设用地(0.555),水体(-0.347) | |
16小类 | 园地(-0.346),林地(-0.435),住宅用地(0.599) | ||
景观格局指数 | 4大类 | 绿地 | 绿地_LPI(-0.443),绿地_COHESION(-0.434),绿地_DIVISION(0.383) |
建设用地 | 建设用地_LPI(0.554),建设用地_COHESION(0.375),建设用地_DIVISION(-0.587) | ||
水体 | 水体_COHESION(-0.543) | ||
景观水平 | 4大类_CONTAG(0.438),4大类_SHDI(-0.490) | ||
16小类 | 园地 | 园地_COHESION(-0.503) | |
林地 | 林地_LPI(-0.356),林地_COHESION(-0.591) | ||
草地 | 草地_COHESION(-0.359) | ||
工矿用地 | 工矿用地_LPI(0.380) | ||
住宅用地 | 住宅用地_LPI(0.390),住宅用地_DIVISION(-0.397) | ||
公园绿地 | 公园绿地_COHESION(-0.377) | ||
特殊用地 | 特殊用地_LPI(0.378),特殊用地_DIVISION(-0.446) | ||
其他变量 | 平均植被覆盖度(-0.495),平均不透水率(0.501),平均日降雨量(0.542), 平均起伏度(-0.407),平均粗糙度(-0.419),雨水管网线密度(0.422),雨水口点密度(0.356) |
Tab. 5
The parameters of multiple stepwise regression model
回归模型 | 变量 | 模型参数 | ||||
---|---|---|---|---|---|---|
B | Beta | t | Sig. | |||
a | 常数项 | 0.916 | - | 5.292 | 0.000 | R2=0.712 修正R2=0.695 F=42.810 (Sig.=0.000) |
平均日降雨量 | 0.002 | 0.486 | 6.334 | 0.000 | ||
水体_COHESION | -0.008 | -0.375 | -4.860 | 0.000 | ||
平均不透水率 | 1.157 | 0.487 | 6.474 | 0.000 | ||
b | 常数项 | 11.249 | - | 4.843 | 0.000 | R2=0.585 修正R2=0.559 F=22.563 (Sig.=0.000) |
平均日降雨量 | 0.002 | 0.570 | 6.075 | 0.000 | ||
平均粗糙度 | -11.209 | -0.457 | -4.858 | 0.000 | ||
园地面积比例 | -0.009 | -0.331 | -3.539 | 0.001 |
[1] | Ministry of Housing and Urban-Rural Development of The People's Republic of China. Code for Design of Outdoor Wastewater Engineering, 2011. |
[中华人民共和国住房和城乡建设部. 室外排水设计规范, 2011.] | |
[2] | Xu Youpeng, et al.Flood Risk under Watershed Urbanization. Nanjing: Southeast University Press, 2012. |
[许有鹏, 等. 流域城市化与洪涝风险. 南京: 东南大学出版社, 2012.] | |
[3] |
Du S, Van Rompaey A, Shi P, et al.A dual effect of urban expansion on flood risk in the Pearl River Delta (China) revealed by land-use scenarios and direct runoff simulation. Natural Hazards, 2015, 77(1): 111-128.
doi: 10.1007/s11069-014-1583-8 |
[4] |
Guo Xuemei, Ren Guoyu, Guo Yuxi, et al.Influential factors of city water logging and the meteorological service. Journal of Catastrophology, 2008, 23(2): 46-49.
doi: 10.3969/j.issn.1000-811X.2008.02.011 |
[郭雪梅, 任国玉, 郭玉喜, 等. 我国城市内涝灾害的影响因子及气象服务对策. 灾害学, 2008, 23(2): 46-49.]
doi: 10.3969/j.issn.1000-811X.2008.02.011 |
|
[5] | Zhang Yue.Some problems and solutions on urban storm waterlogging disaster. China Water and Wastewater, 2010, 26(16): 41-42. |
[张悦. 关于城市暴雨内涝灾害的若干问题和对策. 中国给水排水, 2010, 26(16): 41-42.] | |
[6] | Wang Weiwu, Wang Qin, Lin Hui, et al.Review and prospect of China urban waterlogging disaster. Urban Problems, 2015(10): 24-28. |
[王伟武, 汪琴, 林晖, 等. 中国城市内涝研究综述及展望. 城市问题, 2015(10): 24-28.] | |
[7] |
Zhang Zhengtao, Gao Chao, Liu Qing, et al.Risk assessment on storm flood disasters of different return periods in Huaihe River Basin. Geographical Research, 2014, 33(7): 1361-1372.
doi: 10.11821/dlyj201407015 |
[张正涛, 高超, 刘青, 等. 不同重现期下淮河流域暴雨洪涝灾害风险评价. 地理研究, 2014, 33(7): 1361-1372.]
doi: 10.11821/dlyj201407015 |
|
[8] | IPCC. Intergovernmental Panel on Climate Change Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. Cambridge: Cambridge University Press, 2011. |
[9] | Xie Yingxia.Development of drainage planning in view of frequent urban waterlogging disasters. City Planning Review, 2013(2): 45-50. |
[谢映霞. 从城市内涝灾害频发看排水规划的发展趋势. 城市规划, 2013(2): 45-50.] | |
[10] |
Zhang Dongdong, Yan Denghua, Wang Yicheng, et al.Research progress on risk assessment and integrated strategies for urban pluvial flooding. Journal of Catastrophology, 2014, 29(1): 144-149.
doi: 10.3969/j.issn.1000-811X.2014.01.026 |
[张冬冬, 严登华, 王义成, 等. 城市内涝灾害风险评估及综合应对研究进展. 灾害学, 2014, 29(1): 144-149.]
doi: 10.3969/j.issn.1000-811X.2014.01.026 |
|
[11] | Liang Qian, Liu Yingming, Zhang Xiaoju.Impact assessment of flow capacity of stormwater inlets on local inundation based on model. China Water and Wastewater, 2015, 31(19): 137-140. |
[梁骞, 刘应明, 张晓菊. 基于模型评估雨水口过流能力对区域内涝的影响. 中国给水排水, 2015, 31(19): 137-140.] | |
[12] |
Liu Zhenhuan, Li You, Peng Jian.Progress and perspective of the research on hydrological effects of urban impervious surface on water environment. Progress in Geography, 2011, 30(3): 275-281.
doi: 10.11820/dlkxjz.2011.03.003 |
[刘珍环, 李猷, 彭建. 城市不透水表面的水环境效应研究进展. 地理科学进展, 2011, 30(3): 275-281.]
doi: 10.11820/dlkxjz.2011.03.003 |
|
[13] |
Shuster W.D, Bonta J, Thurston H, et al. Impacts of impervious surface on watershed hydrology: A review. Urban Water Journal, 2005, 2(4): 263-275.
doi: 10.1080/15730620500386529 |
[14] |
Armson D, Stringer P, Ennos A R.The effect of street trees and amenity grass on urban surface water runoff in Manchester, UK. Urban Forestry & Urban Greening, 2013, 12(3): 282-286.
doi: 10.1016/j.ufug.2013.04.001 |
[15] |
Li Zhenghui, Tan Yunzhi, Ding Pinliang, et al.A new method for reduction of waterlogging hazard: Soaking with green area. Journal of Guangxi University (Natural Science Edition), 2013, 38(4): 1014-1020.
doi: 10.3969/j.issn.1001-7445.2013.04.034 |
[李正辉, 谈云志, 丁品良, 等. 一种消减内涝的新方法: 城市绿地吸纳. 广西大学学报(自然科学版), 2013, 38(4): 1014-1020.]
doi: 10.3969/j.issn.1001-7445.2013.04.034 |
|
[16] |
Yuan Yi, Shi Peijun, Liu Yinghui, et al.Impact of land use change on urban flood disaster. Journal of Natural Disasters, 2003, 12(3): 6-13.
doi: 10.3969/j.issn.1004-4574.2003.03.002 |
[袁艺, 史培军, 刘颖慧, 等. 土地利用变化对城市洪涝灾害的影响. 自然灾害学报, 2003, 12(3): 6-13.]
doi: 10.3969/j.issn.1004-4574.2003.03.002 |
|
[17] |
Solín L, Feranec J, Nováček J.Land cover changes in small catchments in Slovakia during 1990-2006 and their effects on frequency of flood events. Natural Hazards, 2011, 56(1): 195-214.
doi: 10.1007/s11069-010-9562-1 |
[18] |
Fu Bojie, Chen Liding, Ma Keming, et al.Principle and Application of Landscape Ecology. Beijing: Science Press, 2011.
doi: <a href='http://dx.doi.org/10.5846/stxb201306071391'>10.5846/stxb201306071391</a> |
[傅伯杰, 陈利顶, 马克明, 等. 景观生态学原理及应用. 北京: 科学出版社, 2011.]
doi: <a href='http://dx.doi.org/10.5846/stxb201306071391'>10.5846/stxb201306071391</a> |
|
[19 ] Huang Shuo, Guo Qinghai. Research review on effects of urban landscape pattern changes on water environment. Acta Ecologica Sinica, 2014, 34(12): 3142-3150.
doi: <a href='http://dx.doi.org/10.5846/stxb201306071391'>10.5846/stxb201306071391</a> |
|
[黄硕, 郭青海. 城市景观格局演变的水环境效应研究综述. 生态学报, 2014, 34(12): 3142-3150.]
doi: <a href='http://dx.doi.org/10.5846/stxb201306071391'>10.5846/stxb201306071391</a> |
|
[20] | Zhang Jianyun, Song Xiaomeng, Wang Guoqing, et al.Development and challenges of urban hydrology in a changing environment: I. Hydrological response to urbanization. Advances in Water Science, 2014, 25(4): 594-605. |
[张建云, 宋晓猛, 王国庆, 等. 变化环境下城市水文学的发展与挑战: I. 城市水文效应. 水科学进展, 2014, 25(4): 594-605.] | |
[21] |
Guo Xuelian, Xu Jiawei, Lu Xianguo.Effect of spatial structure of typical urban underlying surface on rainfall infiltration rate. Journal of Soil and Water Conservation, 2007, 21(4): 60-62, 66.
doi: 10.3321/j.issn:1009-2242.2007.04.014 |
[郭雪莲, 许嘉巍, 吕宪国. 城市典型下垫面空间构型对降水蓄渗率的影响. 水土保持学报, 2007, 21(4): 60-62, 66.]
doi: 10.3321/j.issn:1009-2242.2007.04.014 |
|
[22] |
Qi Xiaoming, Du Peijun, Wu Zhiyong, et al.Research on relationship between urban landscape pattern and hydrological effect. Water Resources and Hydropower Engineering, 2010, 41(4): 1-3.
doi: 10.3969/j.issn.1000-0860.2010.04.001 |
[戚晓明, 杜培军, 吴志勇, 等. 城市景观格局与水文效应关系研究. 水利水电技术, 2010, 41(4): 1-3.]
doi: 10.3969/j.issn.1000-0860.2010.04.001 |
|
[23] |
Bautista S, Mayor Á G, Bourakhouadar J, et al.Plant spatial pattern predicts hillslope runoff and erosion in a semiarid Mediterranean landscape. Ecosystems, 2007, 10(6): 987-998.
doi: 10.1007/s10021-007-9074-3 |
[24] |
Zhang B, Xie G D, Li N, et al.Effect of urban green space changes on the role of rainwater runoff reduction in Beijing, China. Landscape and Urban Planning. 2015, 140: 8-16.
doi: 10.1016/j.landurbplan.2015.03.014 |
[25] |
Zhang Linyan, Xia Jisheng, Ye Wanhui.Overview on choosing landscape indices in landscape pattern analysis. Yunnan Geographic Environment Research, 2008, 20(5): 38-43.
doi: 10.3969/j.issn.1001-7852.2008.05.008 |
[张林艳, 夏既胜, 叶万辉. 景观格局分析指数选取刍论. 云南地理环境研究, 2008, 20(5): 38-43.]
doi: 10.3969/j.issn.1001-7852.2008.05.008 |
|
[26] | Chen Wenbo, Xiao Duning, Li Xiuzhen.Classification, application, and creation of landscape indices. Chinese Journal of Applied Ecology, 2002, 13(1): 121-125. |
[陈文波, 肖笃宁, 李秀珍. 景观指数分类、应用及构建研究. 应用生态学报, 2002, 13(1): 121-125.] | |
[27] | Yin Xuewen, Yu Kongjian, Li Dihua.Effect of urban green space landscape on rainwater storage function. Annual National Planning Conference Proceedings. Hainan, 2014. |
[殷学文, 俞孔坚, 李迪华. 城市绿地景观格局对雨洪调蓄功能的影响. 2014中国城市规划年会论文集. 海南, 2014.] | |
[28] | Meng Xianlei.Multi-scale relationships between impervious surface, vegetation, water and urban heat island [D]. Shanghai: East China Normal University, 2010. |
[孟宪磊. 不透水面、植被、水体与城市热岛关系的多尺度研究[D]. 上海: 华东师范大学, 2010.] | |
[29] | Arnold C, Gibbons C.Impervious surface coverage-The emergence of a key environmental indicator. Journal of the American Planning Association. 1996, 62(2): 243-258. |
[30] |
Li Miaomiao, Wu Bingfang, Yan Changzhen, et al.Estimation of vegetation fraction in the upper basin of Miyun Reservoir by remote sensing. Resources Science, 2004, 26(4): 153-159.
doi: 10.3321/j.issn:1007-7588.2004.04.022 |
[李苗苗, 吴炳方, 颜长珍, 等. 密云水库上游植被覆盖度的遥感估算. 资源科学, 2004, 26(4): 153-159.]
doi: 10.3321/j.issn:1007-7588.2004.04.022 |
|
[31] | Li Weina.Study on extraction methods of impervious surface information extraction from urban area using remote sensing [D]. Taiyuan: North University of China, 2013. |
[李玮娜. 基于遥感技术的城市不透水面信息的提取应用[D]. 太原: 中北大学, 2013.] | |
[32] |
Henderson S B, Beckerman B, Jerrett M, et al.Application of land use regression to estimate long-term concentrations of traffic-related nitrogen oxides and fine particulate matter. Environmental Science & Technology, 2007, 41(7): 2422-2428.
doi: 10.1021/es0606780 pmid: 17438795 |
[1] | ZHANG Yongqiang, KONG Dongdong, ZHANG Xuanze, TIAN Jing, LI Congcong. Impacts of vegetation changes on global evapotranspiration in the period 2003-2017 [J]. Acta Geographica Sinica, 2021, 76(3): 584-594. |
[2] | LONG Hualou, CHEN Kunqiu. Urban-rural integrated development and land use transitions: A perspective of land system science [J]. Acta Geographica Sinica, 2021, 76(2): 295-309. |
[3] | PENG Shiyao, CHEN Shaokuan, XU Qi, NIU Jiaqi. Spatial characteristics of land use based on POI and urban rail transit passenger flow [J]. Acta Geographica Sinica, 2021, 76(2): 459-470. |
[4] | LIAO Liuwen, GAO Xiaolu, LONG Hualou, TANG Lisha, CHEN Kunqiu, MA Enpu. A comparative study of farmland use morphology in plain and mountainous areas based on farmers' land use efficiency [J]. Acta Geographica Sinica, 2021, 76(2): 471-486. |
[5] | WANG Xiaofan, DAI Erfu, ZHENG Du, WU Zhuo. Effects of harvesting variables on area and aboveground biomass of forest in Southern China [J]. Acta Geographica Sinica, 2021, 76(1): 223-234. |
[6] | SHI Nana, HAN Yu, WANG Qi, HAN Ruiying, GAO Xiaoqi, ZHAO Zhiping, LIU Gaohui, XIAO Nengwen. Risk assessment of sandstorm diffusion and landscape pattern optimization in southern Xinjiang [J]. Acta Geographica Sinica, 2021, 76(1): 73-86. |
[7] | YUAN Yu, FANG Guohua, LU Chengxuan, YAN Min. Flood risk assessment under the background of urbanization based on landscape ecology [J]. Acta Geographica Sinica, 2020, 75(9): 1921-1933. |
[8] | YANG Weishi, DAI Erfu, ZHENG Du, DONG Yuxiang, YIN Le, MA Liang, WANG Junxiong, PAN Lihu, QIN Shipeng. Spatial simulation of "Grain to Green Program" implementation in a typical region based on agent-based model [J]. Acta Geographica Sinica, 2020, 75(9): 1983-1995. |
[9] | QU Shijin, HU Shougeng, LI Quanfeng. Stages and spatial patterns of urban built-up land transition in China [J]. Acta Geographica Sinica, 2020, 75(7): 1539-1553. |
[10] | SONG Xiaoqing, SHEN Yajing, WANG Xiong, LI Xinyi. Vulnerability to biological disasters: A novel field of cultivated land use transition research [J]. Acta Geographica Sinica, 2020, 75(11): 2362-2379. |
[11] | SUN Yizhong, YANG Jing, SONG Shuying, ZHU Jie, DAI Junjie. Modeling of multilevel vector cellular automata and its simulation of land use change [J]. Acta Geographica Sinica, 2020, 75(10): 2164-2179. |
[12] | JU Hongrun, ZUO Lijun, ZHANG Zengxiang, ZHAO Xiaoli, WANG Xiao, WEN Qingke, LIU Fang, XU Jinyong, LIU Bin, YI Ling, HU Shunguang, SUN Feifei, TANG Zhanzhong. Methods research on describing the spatial pattern of land use types in China [J]. Acta Geographica Sinica, 2020, 75(1): 143-159. |
[13] | LU Lu, DAI Erfu, CHENG Qianding, WU Zhenzhen. The sources and fate of nitrogen in groundwater under different land use types: Stable isotope combined with a hydrochemical approach [J]. Acta Geographica Sinica, 2019, 74(9): 1878-1889. |
[14] | LI Qingpu,ZHANG Zhengdong,WAN Luwen,YANG Chuanxun,ZHANG Jie,YE Chen,CHEN Yuchan. Landscape pattern optimization in Ningjiang River Basin based on landscape ecological risk assessment [J]. Acta Geographica Sinica, 2019, 74(7): 1420-1437. |
[15] | SU Weizhong,RU Jingjing,YANG Guishan. Modelling stormwater management based on infiltration capacity of land use in the watershed scale [J]. Acta Geographica Sinica, 2019, 74(5): 948-961. |