Acta Geographica Sinica ›› 2016, Vol. 71 ›› Issue (9): 1653-1662.doi: 10.11821/dlxb201609015
• Orginal Article • Previous Articles Next Articles
Haiyan TAO1,2(), Zhongzhe PAN3, Maolin PAN4, Li ZHUO1(
), Yong XU5, Miao LU1
Received:
2016-02-17
Revised:
2016-06-10
Online:
2016-11-25
Published:
2016-11-25
Supported by:
Haiyan TAO, Zhongzhe PAN, Maolin PAN, Li ZHUO, Yong XU, Miao LU. Mixing spatial-temporal transmission patterns of metropolis dengue fever: A case study of Guangzhou, China[J].Acta Geographica Sinica, 2016, 71(9): 1653-1662.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Contingency table of Knox index
空间距离 (km) | 时间距离(周) | ||||
---|---|---|---|---|---|
[0, 1) | [1, 2) | [2, 3) | [3, 4) | [4, 5) | |
[0, 1) | 9649* | 6779* | 4229 | 2707* | 2180* |
[1, 2) | 9322 | 6063 | 3620 | 2244* | 1440 |
[2, 3) | 8037 | 5118 | 3083 | 1692 | 1319 |
[3, 4) | 8311 | 5321 | 3141 | 1725 | 1294 |
[4, 5) | 8421 | 5583 | 3476 | 1653 | 1184 |
[5, 6) | 9132* | 5720 | 3246 | 1467 | 1173 |
[6, 7) | 8942* | 5510 | 3070* | 1402 | 1197 |
[7, 8) | 6502 | 3825 | 2523 | 1019 | 791 |
[8, 9) | 4789 | 2983 | 2088 | 727 | 618 |
[1] | Brady O J, Gething P W, Bhatt S, et al.Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Neglected Tropical Diseases, 2012, 6(8): e1760. |
[2] |
Bhatt S, Gething P W, Brady O J, et al.The global distribution and burden of dengue. Nature, 2013, 496(7446): 504-507.
doi: 10.1038/nature12060 |
[3] | World Health Organization.Dengue and severe dengue.Fact sheet N0117. Update May 2015. . |
[4] |
Wen Z H, Lin M H, Fang C T.Population movement and vector-borne disease transmission: Differentiating spatial-temporal diffusion pattern of commuting and noncommuting dengue cases. Annals of the Association of American Geographers, 2012, 102(5): 1026-1037.
doi: 10.1080/00045608.2012.671130 |
[5] | Li Sen, Tao Haiyan, Qin Yan, et al.Remote sensing and geoinformatics based environmental risk factors identification of dengue fever. Chinese Journal of Disease Control and Prevention, 2010, 14(9): 869-973. |
[李森, 陶海燕, 秦雁, 等. 基于遥感与地理信息技术的登革热环境风险因子标识. 中华疾病控制杂志, 2010, 14(9): 869-973.] | |
[6] |
Hagenlocher M, Delmelle E, Casas I, et al.Assessing socioeconomic vulnerability to dengue fever in Cali, Colombia: statistical vs expert-based modeling. International Journal of Health Geographics, 2013, 12: 36.
doi: 10.1186/1476-072X-12-36 pmid: 3765508 |
[7] |
Lowa R, Bailey T C, Stephenson D B, et al.Spatio-temporal modelling of climate-sensitive disease risk: Towards an early warning system for dengue in Brazil. Computers & Geosciences, 2011, 37(3): 371-381.
doi: 10.1016/j.cageo.2010.01.008 |
[8] |
Lowa R, Barcellos C, Coelho C, et al.Dengue outlook for the World Cup in Brazil: An early warning model framework driven by real-time seasonal climate forecasts. The Lancet Infectious Diseases, 2014, 14(7): 619-626.
doi: 10.1016/S0140-6736(08)61345-8 pmid: 24841859 |
[9] |
Machado-Machado E A. Empirical mapping of suitability to dengue fever in Mexico using species distribution modeling. Applied Geography. 2012, 33: 82-93.
doi: 10.1016/j.apgeog.2011.06.011 |
[10] |
Chien L C, Yu H L.Impact of meteorological factor on the spatiotemporal patterns of dengue fever incidence. Environment International, 2014, 73: 46-56.
doi: 10.1016/j.envint.2014.06.018 pmid: 25084561 |
[11] |
Wu P C, Lay J G, Guo H R, et al.Higher temperature and urbanization affect the spatial patterns of dengue fever transmission in subtropical Taiwan. Science of the Total Environment, 2009, 407(7): 2224-2233.
doi: 10.1016/j.scitotenv.2008.11.034 pmid: 19157509 |
[12] |
Mahabir R S, Severson D W, Chadee D D.Impact of road networks on the distribution of dengue fever cases in Trinidad, West Indies. Acta Tropica, 2012, 123(3): 178-183.
doi: 10.1016/j.actatropica.2012.05.001 |
[13] |
Li S, Tao H Y, Xu Y.Abiotic determinants to the spatial dynamics of dengue fever in Guangzhou. Asia-Pacific Journal of Public Health, 2013, 25(3): 239-247.
doi: 10.1177/1010539511418819 pmid: 21852418 |
[14] |
Vazquez-Prokopec G M, Kitron U, Montgomery B, et al. Quantifying the spatial dimension of dengue virus epidemic spread within a tropical urban environment. PLoS Neglected Tropical Diseases, 2010, 4(12): e920.
doi: 10.1371/journal.pntd.0000920 |
[15] |
Li Y, Kamara F, Zhou G, et al.Urbanization increases aedes albopictus larval habitats and accelerates mosquito development and survivorship. PLoS Neglected Tropical Diseases, 2014, 8(11): e3301.
doi: 10.1371/journal.pntd.0003301 pmid: 4230920 |
[16] |
Wen Z H, Lin M H, Teng H J, et al.Incorporating the human-aedes mosquito interactions into measuring the spatial risk of urban dengue fever. Applied Geography, 2015, 62: 256-266.
doi: 10.1016/j.apgeog.2015.05.003 |
[17] | Morrison A C, Getis A, Santiago M, et al.Exploratory space-time analysis of reported dengue cases during an outbreak in Florida, Puerto Rico, 1991-1992. The American Journal of Tropical Medicine and Hygiene, 1998, 58(3): 287-298. |
[18] |
Tran A, Deparis X, Dussart P, et al.Dengue spatial and temporal patterns, French Guiana, 2001. Emerging Infectious Diseases, 2004, 10(4): 615-621.
doi: 10.3201/eid1004.030186 pmid: 15200850 |
[19] |
Rotela C, Fouque F, Lamfri M, et al.Space-time analysis of the dengue spreading dynamics in the 2004 Tartagal outbreak, northern Argentina. Acta Tropica, 2007, 103(1): 1-13.
doi: 10.1016/j.actatropica.2007.05.003 pmid: 17603989 |
[20] |
Estallo E L, Carbajo A E, Grech M G, et al.Sptio-temporal dynamics of dengue 2009 outbreak in Cordoba City, Argentina. Acta Tropica, 2014, 136: 129-136.
doi: 10.1016/j.actatropica.2014.04.024 |
[21] | Kan C C, Lee P F, Wen Z H, et al.Two clustering diffusion patterns identified from the 2001-2003 dengue epidemic, Kaohsiung, Taiwan. The American Journal of Tropical Medicine and Hygiene, 2008, 79(3): 344-352. |
[22] |
Gu W, Regens J L.Source reduction of mosquito larval habitats has unexpected consequences on malaria transmission. Processing of the National Academy of Sciences of the United States of America, 2006, 103(46): 17560-17563.
doi: 10.1073/pnas.0608452103 pmid: 17085587 |
[23] |
Stoddard S T, Morrison A C,Vazquea-Prokopec G, et al. The role of human movement in the transmission of vector-borne pathogens. PLoS Neglected Tropical Diseases, 2009, 3(7): e481.
doi: 10.1371/journal.pone.0006763 pmid: 19707544 |
[24] |
Adams B, Kapan D D.Man Bites Mosquito: Understanding the contribution of human movement to vector-borne disease dynamics. PLoS One, 2009, 4(8): e6763.
doi: 10.1371/journal.pone.0006763 pmid: 19707544 |
[25] |
Klovdahl A S.Social networks and the spread of infectious disease: The AIDS example. Social Science & Medicine, 1985, 21(11): 1203-1216.
doi: 10.1016/0277-9536(85)90269-2 pmid: 3006260 |
[26] | May R M, Anderson R M.Transmission dynamics of HIV infection. Nature, 1987, 326(6109): 137-142. |
[27] | Hu Bisong, Gong Jianhua, Zhou Jieping, et al.Spatial-temporal characteristics of epidemic spread in-out flow. Science China: Earth Sciences, 2013, 43(9): 1380-1397. |
[胡碧松, 龚建华, 周洁萍, 等. 疾病传播输入输出流的时空特征分析. 中国科学: 地球科学, 2013, 43(9): 1499-1517.] | |
[28] |
Hufnagel L, Brockmann D, Geisel T.Forecast and control of epidemics in a globalized world. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(42): 15124-15129.
doi: 10.1073/pnas.0308344101 pmid: 15477600 |
[29] | Apolloni A, Poletto C, Ramasco J J, et al.Metapopulation epidemic models with heterogeneous mixing and travel behavior. Theoretical Biology and Medical Modelling, 2014, 11(1): 3. . |
[30] |
Khan K, Arino J, Hu W, et al.Spread of a novel influenza A (H1N1) virus via global airline transportation. The New England Journal of Medicine, 2009, 361(2): 212-214.
doi: 10.1056/NEJMc0904559 pmid: 19564630 |
[31] |
Knox E G, Bartlett M S.The detection of space-time interactions. Journal of the Royal Statistical Society. Series C(Applied Statistics), 1964, 13(1): 25-30.
doi: 10.2307/2985220 |
[32] |
Kulldorff M.The Knox method and other tests for space-time interaction. Biometrics, 1999, 55(2): 544-552.
doi: 10.1111/j.0006-341X.1999.00544.x pmid: 11318212 |
[33] |
Knox G.Detection of low intensity epidemicity: Application to Cleft Lip and Palate. British Journal of Preventive and Social Medicine, 1963, 17(3): 121-127.
doi: 10.1136/jech.17.3.121 pmid: 14044846 |
[34] | Mantel N.The detection of disease clustering and a generalized regression approach. Cancer Research, 1967, 27(2): 209-220. |
[35] | Newman M E J. Assortative mixing in networks. Physical Review Letters, 2002, 89(20). . |
[36] | Ge Xin, Zhao Hai, Zhang Jun.Degree correlation and its features of spreading on networks. Journal of Computer Research and Development, 2013, 54(4): 741-749. |
[葛新, 赵海, 张君. 网络度相关及其传播特征研究. 计算机研究与发展, 2013, 54(4): 741-749.] | |
[37] | Freeman LC. Centrality in social networks conceptual clarification.Social Networks, 1978-1979, 1(3): 215-239. |
[38] | Brandes U.A faster algorithm for betweenness centrality. The Journal of Mathematical Sociology, 2001, 25(2): 163-177. |
[39] |
Wang J F, Li X H.Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region, China. International Journal of Geographical Information Science, 2010, 24(1): 107-127.
doi: 10.1080/13658810802443457 |
[40] |
Wang J F, Hu Y.Environmental health risk detection with GeogDetector. Environmental Modelling & Software, 2012, 33: 114-115.
doi: 10.1016/j.envsoft.2012.01.015 |