Acta Geographica Sinica ›› 2016, Vol. 71 ›› Issue (7): 1094-1104.doi: 10.11821/dlxb201607001
• Simulation Research • Next Articles
Lingling ZHAO1,2, Changming LIU2,3, Xiaoxiao WU4(), Lihong LIU4, Zhonggen WANG2, SOBKOWIAK Leszek5
Received:
2015-11-08
Revised:
2016-03-28
Online:
2016-07-25
Published:
2016-07-25
Supported by:
Lingling ZHAO, Changming LIU, Xiaoxiao WU, Lihong LIU, Zhonggen WANG, SOBKOWIAK Leszek. A review of underlying surface parametrization methods in hydrologic models[J].Acta Geographica Sinica, 2016, 71(7): 1094-1104.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
The classification of runoff yield methods in hydrological model
产流类型 | 产流计算方法 | 常用模型 |
---|---|---|
降水径流相关关系 | SCS、非线性产流方法 | DTVGM[10-12]、HIMS[13-14]、SWMM[15]、SWAT[16-17]、HEC-HMS[18] |
蓄满产流 | 土壤蓄水容量曲线 | 新安江[19]、VIC[20-21]、EasyDHM[22-23] |
地形指数 | TOPMEDEL[24-25]、TOPKAPI[26] | |
超渗产流 | 土壤下渗能力曲线 | 陕北模型[19]、水箱模型[32]、EasyDHM、TOPMEDEL、VIC |
Green-Ampt | SWAT、WEP、HIMS、SWMM、PRMS[32]、HEC-HMS | |
动力方程法 | Richards方程 | VIC、WEP[28]、VIP[29]、MIKE SHE[30-31] |
Tab. 2
The classification of confluence methods in hydrological model
汇流过程 | 汇流计算方法 | 模型 |
---|---|---|
坡面汇流 | 单位线法 | 新安江模型、SWMIV、HSPF、HEC-1、TOPMODEL、VIC-3L、HIMS、SWAT |
等流时线法 | 新安江模型、HIMS | |
线性水库方程 | 新安江模型、TOPMODEL、DTVGM | |
非线性水库方程 | SWMM、TOPKAPI | |
河道汇流 | 运动波方程 | HEC-1、TOPKAPI、DTVGM、WEP-L[36]、EasyDHM |
动力波方程 | SHE、VIC-3L[35]、PRWS、WEP-L | |
马斯京根法 | 新安江模型、HBV、HEC-1、SWAT、HIMS、EasyDHM | |
变量存储系数法 | SWAT、EasyDHM |
Tab. 3
The summary of runoff formation methods
产流方法 | 主要原理 | 主要公式 | 参数 | 确定方法 | 备注 | |
---|---|---|---|---|---|---|
植被截留 | Horton经验公式 | Sv、C | 经验值 | In为截留损失;Sv为林冠遮蔽区植被的蓄水能力;Pc为植被覆盖处降雨 | ||
洼地填洼 | 流域上填洼量的大小与洼地的分布和降雨量有关 | s、k | 由实测资料及公式计算获得 | V为洼地容积;s为洼地蓄量;I为雨强;f为下渗率;Pe为净雨量;a、b、k为常数 | ||
降 雨 径 流 相 关 关 系 法 | SCS曲线数方法 | 是在实测资料的基础上经过统计分析并总结而得到的经验关系 | CN | 查表获得 | Qsurf为日地表径流;Rday为日降水量;Ia为初损量;S为截留量;CN为流域综合参数 | |
非线性时变增益产流方法 | 降雨径流的系统关系是非线性的,其重要的贡献是产流过程中土壤湿度(即土壤含水量)不同所引起的产流量变化 | N值 | 经验值 | R(t)为有效净雨;X(t)为降雨;G(t)为系统增益,与流域土湿有较理想的线性近似关系;g1、g2分别为产流模型参数;N为效力参数 | ||
蓄 满 产 流 | 流域需水容量曲线法 | 流域蓄水容量曲线是将流域内各地点包气带的蓄水容量,按从小到大顺序排列得到的一条蓄水容量与相应面积关系的统计曲线 | WM、b | 由公式计算获得 | WM′为各地点包气带蓄水容量值,WMM为其中的最大值;α为流域面积的相对值;WM为全流域平均的蓄水容量;b为常数 | |
地形指数 | 壤中流始终处于稳定状态,单宽集水面积由αi表示,饱和地下水的水力坡度由地表局部坡度tanβi表示 | A、 | 由实测资料及公式计算获得 | Qb为壤中流;T0为饱和导水率;A为流域面积; | ||
Richards方程 | Richards在1931年研究流体通过多孔介质中毛细管传导作用时推导得到 | K | 由公式计算获得 | θ为含水量;t为时间;K为渗透系数;φ为非饱和土壤的总土水势;x、y、z分别表示坐标轴方向 | ||
超 渗 产 流 | 下渗曲线法 | 判别降雨是否产流的标准是雨强是否超过下渗能力,因此,用实测的雨强过程扣除下渗过程,就可得净雨过程,即产流量过程 | β、f0、fc | 实测获得 | Fp(t)为t时刻累积下渗水量;β为系数;f0为起始下渗率;fc为稳定下渗率 | |
初损后损法 | 下渗曲线法的一种简化方法,它把实际的下渗过程简化为初损和后损两个阶段 | Ia、fc | 由实测资料及公式计算获得 | Pet为净雨量;Pt为t~t+Δt时段面平均雨量;Ia为降雨初损量;fc为流域最大潜在的降雨损失率 | ||
盈亏常数法 | 认为初损量是随着时间和降雨的发展而变化的变量,在长期不降雨后,初损量会逐渐恢复至初值 | Ia、fc、vc | 由实测资料及公式计算获得 | Iat为t时刻的初损量;Ia为最初的初损量;Pt为t时刻的降雨量;Vt为t时刻的初损恢复量 | ||
Green&Ampt(物理概念公式) | 假定入渗过程中湿润锋面始终为一个干湿截然分开的界面,湿润锋前为初始含水量,湿润锋面处存在一个固定不变的吸力 | K、St、 | 可以通过具体实验测定,也可以采用参考值 | ft为t时段的降雨损失;K为饱和水力传导度;Ft为体积土壤缺水量;St为t时刻的累积降雨损失; | ||
Horton(经验公式) | 认为下渗率不仅是时间的函数,还应该跟土壤含水量的状态有关。土壤含水量大,则下渗能力低,渗透率增加 | K、fc | 经验值、具体实验测定 | fp为下渗容量;f0为初始下渗容量;fc为稳定下渗率;k为经验参数;t为入渗历时 | ||
Kostiakov(经验公式) | 认为在下渗过程中,下渗容量fp与累积下渗量Fp成反比;α为比例常数 | α | 经验值 | fp为下渗容量;α为经验参数;t为入渗历时 | ||
Philip (经验公式) | 认为在下渗过程中,(fp-fc)与(Fp-fct)成反比;α为比例常数 | α、fc | 经验值、具体实验测定 | fp为下渗容量;fc为稳定下渗率;α为经验参数;t为入渗历时 | ||
Hotan (经验公式) | 基于蓄量概念的下渗经验公式 | α、fc | 根据土壤类型及作物情况确定 | fp为下渗容量;SA为表层土壤缺水量;GI为作物生长指数;α为地面孔隙率指数;t为入渗历时 | ||
Smith (经验公式) | 认为下渗率受限于降雨强度,然后土壤表面的水压力水头开始趋于零,而tp时刻开始出现径流 | A、t0、α | 经验值 | fp为下渗容量;f∞为理论上等于饱和水力传导度;A、t0、α分别为与土壤类型、初始土壤含水量和雨强有关的参数 | ||
Smith-Parlange (经验公式) | 可用来计算积水后的积水时间和下渗容量 | ip、s | 根据土壤性质或是下渗试验获得 | ip为积水时的雨强;s为菲利普定义的吸收度;Ks为饱和水力饱和度 |
Tab. 4
The summary of flow concetration methods
汇流方法 | 主要原理 | 主要公式 | 参数 | 确定方法 | 备注 | ||
---|---|---|---|---|---|---|---|
坡 面 汇 流 | 等流时线 | 假定流域中存在着等流时线,认为在同一条等流时线上的水滴将同时流到出口断面,采用汇流速度得出了等流时线的分布 | c | 多以洪峰附近的流速值为主要依据确定汇流速度c值 | Qt为t时段末的出流量;rd为时段净雨量;ΔAi为第i块等流时面积;Δt为单位时段长;t为流量时序;k1、k2分别为累积界限 | ||
单 位 线 | 时段单位线 | 将流域看作一个系统,假定系统是线性的、时不变的,即净雨产生的径流可由线性运算出来 | rd、q | 分析法、试错法、最小二乘法、图解法等 | Qd为流域出口断面时段末直接径流流量;rd为时段净雨量;q为单位线时段末流量 | ||
瞬时单位线(J.E.Nash) | 一个单位的瞬时入流通过串联的n个等效线性水库的调蓄,其出流就是IUH | N、K | 用矩阵法求参数,也可根据地形信息求N值,然后用最优化方法求K值 | N为串联线性水库个数;K为线性水库内水流传播时间 | |||
地貌瞬时单位线 | 假定瞬时注入流域分布均匀的净雨量是由多个水质点组成的,又假定各水质点间成弱相关性,因此求流域瞬时单位线就是水质点滞留时间概率密度函数 | 流速 | 由公式计算获得 | I0为净雨量;fxi为滞留时间Txi的概率密度函数;p(s)为路径概率; | |||
SCS模型单位线 | SCS模型单位线的净雨时段是变化的,故不能给出各时段的无因次单位线纵坐标值,因此,在转绘此无因次单位线时必须十分准确 | 根据公式获得 | |||||
线性水库方程 | 流量水量平衡方程式和蓄量方程式 | K | 水文分析法 | K为蓄量常数(平均流域汇流时间) | |||
非线性水库方程 | 流量水量平衡方程式和蓄量方程式 | n、k | 水文分析法 | n、k为常数 | |||
河 道 流 量 演 算 | 圣维南方程组 | 由连续方程和动量方程组成,其基本定律为质量守恒定律和动量守恒定律 | n、C、K | 通过查表获得 | x为沿河道距离;Z为水位;υ为断面平均流速;n为曼宁糙率系数;C为谢才系数;K为流量模数 | ||
简 化 动 力 方 程 式 | 运动波方程 | 以圣维南方程组为理论基础,忽略动量方程中的惯性项和附加比项 | η | 根据实测资料按照公式获得 | η为波速系数 | ||
扩散波方程 | 以圣维南方程组为理论基础,忽略动量方程中的惯性项 | C、η | 根据实测资料按公式获得 | c为波速;η为扩散系数 | |||
动力波方程 | 动量方程中的每项均不可忽略 | n、C、K | 通过查表获得 | n为曼宁糙率系数;C为谢才系数;K为流量模数 | |||
经 验 关 系 代 替 动 力 方 程 式 | 水库调洪演算法 | 水量平衡方程和槽蓄方程 | I、Q、V | 图解法、试错法 | I为入流量;Q为出流量;V为河段槽蓄量 | ||
Muskingum法 | 水量平衡方程和槽蓄方程 | K、X | 可用河段的水力学和地形特征表示参数;也可用最小二乘法、图解法、矩阵法等确定参数 | K为蓄量常数;X为常数,有各种解释,其范围和它的解释是相互依赖的 | |||
Muskingum-Cunge法 | Muskingum-Cunge法是对Muskingum的改进,最大的区别在于参数K、x的确定,Muskingum-Cunge法的参数是由水流资料确定的 | C0、C1、C2、公式同上 | K、X | 由实测水流资料确定的 | c为波速;Qlat为旁侧入流;B为水面宽度;So是河床坡度 | ||
变量存储系数法 | 对马斯京根法的改进,考虑到河段的洪水波传播时间与河段长度和坡度有关,不同河段K值应该不同 | x、n、R | 通过查表、公式计算获得 | x为常数;n为曼宁系数;R为水力半径 |
Tab. 5
The classification of parameterization in runoff yield process
产流方法 | 类别 | |
---|---|---|
降雨径流相关关系法 | SCS曲线数方法 | 确定型参数类 |
非线性时变增益产流方法 | 确定型参数类 | |
蓄满产流 | 土壤需水容量曲线法 | 率定型参数类 |
地形指数 | 确定型参数类 | |
Richards方程 | 物理概念型 | |
超渗产流 | 下渗曲线法 | 无明确表达类 |
初损后损法 | 无明确表达类 | |
盈亏常数法 | 率定型参数类 | |
Green&Ampt(物理概念公式) | 物理概念型 | |
Horton(经验公式) | 率定型参数类 | |
Kostiakov(经验公式) | 率定型参数类 | |
Philip(经验公式) | 率定型参数类 | |
Hotan(经验公式) | 率定型参数类 | |
Smith(经验公式) | 率定型参数类 | |
Smith-Parlange(经验公式) | 率定型参数类 |
Tab. 6
The classification of flow concentration methods
汇流方法 | 类别 | ||
---|---|---|---|
坡 面 汇 流 | 等流时线 | 率定型参数类 | |
单位线 | 时段单位线 | 无明确表达类 | |
瞬时单位线(J.E.Nash) | 率定型参数类 | ||
地貌瞬时单位线 | 物理概念型 | ||
SCS模型单位线 | 确定型参数类 | ||
线性水库方程 | 率定型参数类 | ||
非线性水库方程 | 率定型参数类 | ||
河 道 流 量 演 算 | 圣维南方程组 | 物理概念型 | |
简化动力方程 | 运动波方程 | 确定型参数类 | |
扩散波方程 | 确定型参数类 | ||
动力波方程 | 确定型参数类 | ||
其他经验关系代替动力方程 | 水库调洪演算法 | 率定型参数类 | |
Muskingum法 | 率定型参数类 | ||
Muskingum-Cunge法 | 率定型参数类 | ||
变量存储系数法 | 率定型参数类 |
[1] |
Liu Changming, Wang Zhonggen, Yang Shengtian, et al.Hydro-informatic modeling system: Aiming at water cycle in land surface material and energy exchange processes. Acta Geographica Sinica, 2014, 69(5): 579-587.
doi: 10.11821/dlxb201405001 |
[刘昌明, 王中根, 杨胜天, 等. 地表物质能量交换过程中的水循环综合模拟系统(HIMS)研究进展. 地理学报, 2014, 69(5): 579-587.]
doi: 10.11821/dlxb201405001 |
|
[2] | Rui Xiaofang.Some problems in research of watershed hydrology model. Advances in Water Science, 1997, 8(1): 94-98. |
[芮孝芳. 流域水文模型研究中的若干问题. 水科学进展, 1997, 8(1): 94-98.] | |
[3] |
Singh V P.Hydrologic Systems: Rainfall-Runoff Modeling. Englewood Cliffs: Prentice Hall, 1988.
doi: 10.1080/02626669809492102 |
[4] | Lu Guihua, He Hai.View of global hydrological cycle. Advances in Water Science, 2006, 17(3): 419-424. |
[陆桂华, 何海. 全球水循环研究进展. 水科学进展, 2006, 17(3): 419-424.] | |
[5] |
Entekhabi D, Asrar G R, Betts A K, et al.An agenda for land surface hydrology research and a call for the second international hydrological decade. Bulletin of the American Meteorological Society, 1999, 80(10): 2043-2058.
doi: 10.1175/1520-0477(1999)0802.0.CO;2 |
[6] | Lu Guihua, Wu Zhiyong, He Hai.Hydrological Cycle and Quantity Forecast. Beijing: Science Press, 2010. |
[陆桂华, 吴志勇, 何海. 水文循环过程及定量预报. 北京: 科学出版社, 2010.] | |
[7] | Singh V P.Computer Models of Watershed Hydrology. Colorado: Water Resources Publications, 1995. |
[8] | Bao Weimin. HydrologicForecasting.Beijing: China Water Power Press, 2006. |
[包为民. 水文预报. 北京:中国水利水电出版社, 2006.] | |
[9] | Bao Weimin, Zhang Jianyun. HydrologicForecasting.Beijing: China Water Power Press, 2008. |
[包为民, 张建云. 水文预报. 北京:中国水利水电出版社, 2008.] | |
[10] |
Xia Jun, Wang Gangsheng, Ye Aizhong, et al.A distributed monthly water balance model for analyzing impacts of land cover change on flow regimes. Pedosphere, 2005, 15(6): 761-767.
doi: 10.1002/jpln.200424108 |
[11] |
Xia Jun, Wang Gangsheng, Tan Ge, et al.Development of distributed time-variant gain model for nonlinear hydrological systems. Science in China: Series D, 2005, 48(6): 713-723.
doi: 10.1360/03yd0183 |
[12] | Xia Jun.Theory and Method of Nonlinear Hydrological System. Wuhan: Wuhan University Academic Library, 2002. |
[夏军. 水文非线性系统理论与方法. 武汉: 武汉大学出版社, 2002.] | |
[13] | Liu Changming, Wang Zhonggen, ZhengHongxing, et al. Development and application of HIMS system and its custom model. Science in China Series E: Technology Science, 2008, 38(3): 350-360. |
[刘昌明, 王中根, 郑红星, 等. HIMS系统及其定制模型的开发与应用. 中国科学E辑: 技术科学, 2008, 38(3): 350-360.] | |
[14] |
Li Jun, Liu Changming, Wang Zhonggen, et al.Two universal runoff yield models: SCS vs. LCM. Acta Geographica Sinica, 2014, 69(7): 926-932.
doi: 10.11821/dlxb201407005 |
[李军, 刘昌明, 王中根, 等. 现行普适降水入渗产流模型的比较研究: SCS与LCM. 地理学报, 2014, 69(7): 926-932.]
doi: 10.11821/dlxb201407005 |
|
[15] | Huber W C.Storm Water Management Model User's Manual (V 5.0). US: Environmental Protection Agency, 2008. |
[16] |
Neitsch S L, Arnold J G, Kiniry J R, et al.Soil and Water Assessment Tool Theoretical Documentation (Version 2009). Texas Water Resources Institute, 2011.
doi: 10.1016/j.csl.2009.04.006 |
[17] | Arnold J G.Williams J R. Srinivasan R, et al.Large area hydrological modeling and assessment (Part 1): Model development. Journal of the American Water Resources Association, 1998, 34(1): 73-89. |
[18] |
Feldman A D.HEC models for water resources system simulation: Theory and experience. Advance in Hydroscience, 1981, 12: 297-423.
doi: 10.1016/B978-0-12-021812-7.50010-9 |
[19] | Zhao Renjun.Regional Hydrological Simulation: Xin'anjiang Model and Shanbei Model. Beijing: China Water Power Press, 1984. |
[赵人俊. 流域水文模拟: 新安江模型和陕北模型. 北京: 中国水利水电出版社, 1984.] | |
[20] |
Liang Xu, Lettenmaier D P, Wood E F.A simple hydrologically based model of land surface water and energy fluxes for general circulation models. Journal of Geophysical Research, 1994, 99(7): 14415-14428.
doi: 10.1029/94JD00483 |
[21] | Liang Xu, Wood E F, Lettenmaier D P.Surface soil moisture parameterization of the VIC-2L model: Evaluation and modification. Global and Planetary Change, 1996, 13(1): 195-206. |
[22] | Lei Xiaohui, Liao Weihong, Jiang Yunzhong, et al.Distributed hydrological model EasyDHM I: Theory. Journal of Hydraulic Engineering, 2010, 41(7): 786-794. |
[雷晓辉, 廖卫红, 蒋云钟, 等. 分布式水文模型EasyDHM (I): 理论方法. 水利学报, 2010, 41(7): 786-794.] | |
[23] | Lei Xiaohui, Jiang Yunzhong, Wang Hao, et al.Distributed hydrological model EasyDHM II: Application. Journal of Hydraulic Engineering, 2010, 41(8): 893-899. |
[雷晓辉, 蒋云钟, 王浩, 等. 分布式水文模型EasyDHM (II): 应用方法. 水利学报, 2010, 41(8): 893-899.] | |
[24] |
Beven K J, Kirkby M J, Schofield N, et al.Testing a physically based flood-forecasting model (Topmodel) for three UK catchments. Journal of Hydrology, 1984, 69: 119-14.
doi: 10.1016/0022-1694(84)90159-8 |
[25] | Beven K, Lamb R, Quinn P, et al.Topmodel: Computer Models of Watershed Hydrology. USA: Water Resources Publications, 1995: 627-668. |
[26] |
Liu Z, Todini E.Towards a comprehensive physically-based rainfall-runoff model. Hydrology and Earth System Sciences Discussions, 2002, 6(5): 859-881.
doi: 10.5194/hess-6-859-2002 |
[27] | Skaags R W, Khaleel R.Infiltration, hydrologic modeling of small watersheds. American Society of Agricultural Engineers, St. Joseph, MI, USA, 1982. |
[28] |
Jia Yangwen, Ni Guangheng, Kawahara Y, et al.Development of WEP model and its application to an urban watershed. Hydrological Process, 2001, 15: 2175-2194.
doi: 10.1002/hyp.275 |
[29] |
Mo Xingguo, Liu Suxia.Simulating the water balance of the Wuding River Basin in the Loess Plateau with a distribution eco-hydrological model. Acta Geographica Sinica, 2004, 59(3): 341-348.
doi: 10.3321/j.issn:0375-5444.2004.03.003 |
[莫兴国, 刘苏峡. 无定河流域水量平衡变化的模拟. 地理学报, 2004, 59(3): 341-348.]
doi: 10.3321/j.issn:0375-5444.2004.03.003 |
|
[30] | Abbott M B, Bathhurst J C, Cunge J A, et al.An introduction to the European Hydrological System-Systeme Hydrologique European, SHE; 1. History and philosophy of a phasically based distributed modeling system. Journal of Hydrology, 1986, 87(1): 45-59. |
[31] | Abbott M B, Bathhurst J C.A introduction to the European Hydrological System-Systeme Hydrologique Europeen, SHE; 2. Structure of a physically-based distributed modeling system. Journal of Hydrology, 1986, 87(1): 61-77. |
[32] | Xu Zongxue. Hydrological Model.Beijing: Science Press, 2009. |
[徐宗学. 水文模型. 北京:科学出版社, 2009.] | |
[33] | Zhang Wenhua, Guo Shenglian.The Theory and Method of Rainfall-Runoff. Wuhan: Hubei Science and Technology Press, 2007. |
[张文华, 郭生练. 流域降雨径流理论与方法. 武汉: 湖北科学技术出版社, 2007.] | |
[34] | Li Li.Study on flood routing of distributed hydrologic models [D]. Nanjing: Hohai University, 2007. |
[李丽. 分布式水文模型的汇流演算研究[D]. 南京: 河海大学, 2007.] | |
[35] |
Yuan Fei, Xie Zhenghui, Liu Qian, et al.An application of the VIC-3L land surface model and remote sensing data in simulating streamflow for the Hanjiang River basin. Canadian Journal of Remote Sensing, 2004, 30(5): 680-690.
doi: 10.5589/m04-032 |
[36] |
JiaYangwen, Wang Hao, Zhou Zuhaoet al. Development of the WEP-L distributed hydrological model and dynamic assessment of water resources in the Yellow River Basin. Journal of Hydrology, 2006, 331(3): 606-629.
doi: 10.1016/j.jhydrol.2006.06.006 |
[37] |
Ullah W, Dickinson W T.Quantitative description of depression storage using a digital surface model: I. Determination of depression storage. Journal of Hydrology, 1979, 42(1/2): 63-75.
doi: 10.1016/0022-1694(79)90006-4 |
[38] |
Ullah W, Dickinson W T.Quantitative description of depression storage using a digital surface model: II. Characteristics of surface depressions. Journal of Hydrology. 1979, 42(1/2): 77-90.
doi: 10.1016/0022-1694(79)90007-6 |
[39] | Linsley R K, Kohler M A, Paulhus J L, et al.Hydrology For Engineers. New York: McGraw-Hill Book Company, 1975. |
[40] | Soil Conservation Service.National Engineering Hand-book. Section 4: Hydrology. USDA, Springfield, VA, 1993. |
[41] |
Mishra S K, Singh V P.Soil Conservation Service Curve Number (SCS-CN) Methodology. Netherlands: Kluwer Academic Publishers, 2003.
doi: 10.1061/(ASCE)HE.1943-5584.0000694 |
[42] | Xia Jun.A system approach to real time hydrological forecasts in watersheds. Water International, 2002, 27(1): 87-97. |
[43] | Wang Gangsheng.Theory and method of distributed time-variant gain model [D]. Beijing: Institute of Geographic Sciences and Natural Resources Research, CAS, 2005. |
[王纲胜. 分布式时变增益水文模型理论与方法研究[D]. 北京: 中国科学院地理科学与资源研究所, 2005.] | |
[44] | Zhao Renjun, Zhuang Yiling.Regional pattern of rainfall-runoff relationship. Journal of East China Technical University of Water Resources Engineering, 1963(S2): 53-68. |
[赵人俊, 庄一鸰. 降雨径流关系的区域规律. 华东水利学院学报, 1963(S2): 53-68.] | |
[45] |
Richards L A.Capillary conduction of liquids through porous mediums. Journal of Applied Physics, 1931, 1(5): 318-333.
doi: 10.1063/1.1745010 |
[46] | Lei Zhidong.Soil-water Dynamics. Beijing: Tsinghua University Press, 1988. |
[雷志栋. 土壤水动力学. 北京: 清华大学出版社, 1988.] | |
[47] | USACE. HEC-HMS Hydrologic Modeling System User′s Manual. Hydrologic Engineering Center, Davis, CA, 2001. |
[48] | USACE. HEC-HMS Hydrologic Modeling System Technical Reference Manual, Hydrologic Engineering Center, Davis, CA, 2000. |
[49] |
Green W H, Ampt G A.Studies on soil physics (Part 1): The flow of air and water through soils. The Journal of Agricultural Science, 1911, 4: 1-24.
doi: 10.1515/ijnsns-2015-0060 |
[50] | Horton R E.Surface runoff phenomena. Horton Hydrology Laboratory, 1935. |
[51] | Horton R E.An approach towards a physical interpretation of infiltration-capacity. Soil Science Society of America Journal, 1940, 5: 399-417. |
[52] |
Philip J R.An infiltration equation with physical significance. Soil Science, 1954, 77(2): 153-157.
doi: 10.1097/00010694-195402000-00009 |
[53] |
Smith R E.Parameter-efficient hydrologic infiltration model. Water Resources Research, 1978, 14(3): 533-538.
doi: 10.1029/WR014i003p00533 |
[54] | Zhan Daojiang, Ye Shouze. EngineeringHydrology.Beijing: China Water Power Press, 2000. |
[詹道江, 叶守泽. 工程水文学. 北京: 中国水利水电出版社, 2000.] | |
[55] | Nash J E.The form of the instantaneous unit hydrograph. Hydrologic Science B, 1957, 45(3): 114-121. |
[56] |
Nash J E.A unit hydrograph study with particular reference to British catchments. Proceedings of the Institution of Civil Engineers B, 1960, 17(3): 249-282.
doi: 10.1680/iicep.1960.11649 |
[57] | Rodriguez-Iturbe I, Valdes J B.The geomorphological structure of hydrologic response. Water Resources Research, 1979, 15(6): 1409-1420. |
[58] |
Gupta V K, Waymire E, Wang C T.A representation of an instantaneous unit hydrograph from geomorphology. Water Resources Research, 1980, 16(5): 855-862.
doi: 10.1029/WR016i005p00855 |
[59] |
Govindaraju R S.Approximate analytical solutions for overland flows. Water Resources Research, 1990, 26(12): 2903-2912.
doi: 10.1029/WR026i012p02903 |
[60] | Singh V P.Accuracy of kinematic wave and diffusion wave approximations for space-independent flows. Hydrological Processes, 1994, 8(1): 45-62. |
[61] |
Orlandini S.On the storm flow response of upland alpine catchments. Hydrological Processes, 1999, 13: 549-562.
doi: 10.1002/(SICI)1099-1085(199903)13:43.0.CO;2-S |
[62] | Rui Xiaofang. Physical Hydrology.Beijing: China Water Power Press, 2004. |
[芮孝芳. 水文学原理. 北京: 中国水利水电出版社, 2004.] | |
[63] |
Zhang S, Cordery L, Sharma A.Application of an improved linear storage routing model for the estimation of large floods. Journal of Hydrology, 2002, 258: 58-68.
doi: 10.1016/S0022-1694(01)00540-6 |
[64] | McCarthy G T. The unit hydrograph and flood routing. Conference of the North Atlantic Division of US Corps of Engineers, 1938. |
[65] |
Bajracharya K.Accuracy criteria for linearised diffusion wave flood routing. Journal of Hydrology, 1997, 195: 200-217.
doi: 10.1016/S0022-1694(96)03235-0 |
[66] | Cunge J A.On the subject of a flood propagation computation method (Muskingum Method). Journal of Hydraulic Research, 1969, 7(2): 205-230. |
[1] | ZHANG Yongqiang, KONG Dongdong, ZHANG Xuanze, TIAN Jing, LI Congcong. Impacts of vegetation changes on global evapotranspiration in the period 2003-2017 [J]. Acta Geographica Sinica, 2021, 76(3): 584-594. |
[2] | LONG Hualou, CHEN Kunqiu. Urban-rural integrated development and land use transitions: A perspective of land system science [J]. Acta Geographica Sinica, 2021, 76(2): 295-309. |
[3] | PENG Shiyao, CHEN Shaokuan, XU Qi, NIU Jiaqi. Spatial characteristics of land use based on POI and urban rail transit passenger flow [J]. Acta Geographica Sinica, 2021, 76(2): 459-470. |
[4] | LIAO Liuwen, GAO Xiaolu, LONG Hualou, TANG Lisha, CHEN Kunqiu, MA Enpu. A comparative study of farmland use morphology in plain and mountainous areas based on farmers' land use efficiency [J]. Acta Geographica Sinica, 2021, 76(2): 471-486. |
[5] | YANG Weishi, DAI Erfu, ZHENG Du, DONG Yuxiang, YIN Le, MA Liang, WANG Junxiong, PAN Lihu, QIN Shipeng. Spatial simulation of "Grain to Green Program" implementation in a typical region based on agent-based model [J]. Acta Geographica Sinica, 2020, 75(9): 1983-1995. |
[6] | QU Shijin, HU Shougeng, LI Quanfeng. Stages and spatial patterns of urban built-up land transition in China [J]. Acta Geographica Sinica, 2020, 75(7): 1539-1553. |
[7] | ZHANG Yili, WU Xue, ZHENG Du. Vertical variation of land cover in the Central Himalayas [J]. Acta Geographica Sinica, 2020, 75(5): 931-948. |
[8] | SONG Xiaoqing, SHEN Yajing, WANG Xiong, LI Xinyi. Vulnerability to biological disasters: A novel field of cultivated land use transition research [J]. Acta Geographica Sinica, 2020, 75(11): 2362-2379. |
[9] | SUN Yizhong, YANG Jing, SONG Shuying, ZHU Jie, DAI Junjie. Modeling of multilevel vector cellular automata and its simulation of land use change [J]. Acta Geographica Sinica, 2020, 75(10): 2164-2179. |
[10] | JU Hongrun, ZUO Lijun, ZHANG Zengxiang, ZHAO Xiaoli, WANG Xiao, WEN Qingke, LIU Fang, XU Jinyong, LIU Bin, YI Ling, HU Shunguang, SUN Feifei, TANG Zhanzhong. Methods research on describing the spatial pattern of land use types in China [J]. Acta Geographica Sinica, 2020, 75(1): 143-159. |
[11] | LU Lu, DAI Erfu, CHENG Qianding, WU Zhenzhen. The sources and fate of nitrogen in groundwater under different land use types: Stable isotope combined with a hydrochemical approach [J]. Acta Geographica Sinica, 2019, 74(9): 1878-1889. |
[12] | RUAN Hongwei,YU Jingjie. Changes in land cover and evapotranspiration in the five Central Asian countries from 1992 to 2015 [J]. Acta Geographica Sinica, 2019, 74(7): 1292-1304. |
[13] | SU Weizhong,RU Jingjing,YANG Guishan. Modelling stormwater management based on infiltration capacity of land use in the watershed scale [J]. Acta Geographica Sinica, 2019, 74(5): 948-961. |
[14] | ZHAO Pengjun,LYU Di. Characteristics of land use structure in small towns of China:Empirical evidences from 121 townships [J]. Acta Geographica Sinica, 2019, 74(5): 1011-1024. |
[15] | SONG Xiaoqing,LI Xinyi. Theoretical explanation and case study of regional cultivated land use function transition [J]. Acta Geographica Sinica, 2019, 74(5): 992-1010. |