Acta Geographica Sinica ›› 2014, Vol. 69 ›› Issue (9): 1346-1357.doi: 10.11821/dlxb201409008
• Orginal Article • Previous Articles Next Articles
Received:
2014-04-22
Revised:
2014-07-10
Online:
2014-09-17
Published:
2014-09-17
Huiyi ZHU, Minghui SUN. Main progress in the research on land use intensification[J].Acta Geographica Sinica, 2014, 69(9): 1346-1357.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Trewavas A.Malthus foiled again and again. Nature, 2002, 418(8): 668-670. |
[2] | Godfray H C J, Beddington J R, Crute I R, et al. Food security: The challenge of feeding 9 billion people. Science, 2010, 327: 812-818. |
[3] | Haberl H, Beringer T, Bhattacharya S C, et al.The global technical potential of bio-energy in 2050: Considering sustainability constraints. Current Opinion in Environmental Sustainability, 2010, 2: 394-403. |
[4] | Tilman D, Balzer C, Hill J, et al.Global food demand and the sustainable intensification of agriculture. Proceedings of the national academy of sciences of the United States of America, 2011, 108: 20260-20264. |
[5] | Lambin E F, Meyfroidt P.Global land use change, economic globalization, and the looming land scarcity. Proceedings of the National Academy of sciences of the United States of America, 2011, 108: 3465-3472. |
[6] | Smith P.Delivering food security without increasing pressure on land. Global Food Security, 2013, 2: 18-23. |
[7] | Tilmana D, Balzerb C, Hillc J,Befort BL. Global food demand and the sustainable intensification of agriculture. Proceedings of the national academy of sciences of the United States of America, 2011, 108, No.50. |
[8] | Erb KH, Haberl H, Rudbeck M.Conceptual framework for analyzing and measuring land-use intensity. Current Opinion in Environmental Sustainability, 2013, 5: 464-470. |
[9] | Shriar A.Agricultural intensity and its measurement in frontier regions. Agroforestry Systems, 2000, 49: 301-318. |
[10] | Boserup E.The Conditions of Agricultural Growth: The Economics of Agrarian Change Under Population Pressure. Earthscan, 1965. |
[11] | Turner B L, Hanham R Q, Portararo A V.Population pressure and agricultural intensity. Annals of the Association of American Geographers, 1977, 67: 384-396. |
[12] | Dayal E.A measure of cropping intensity. Professional Geographer, 1978, 30: 289-296. |
[13] | Ruthenberg H.Farming Systems in the Tropics. Clarendon Press, 1980. |
[14] | Pryor F L.The invention of the plow. Comparative Studies in Society and History, 2009, 27: 727. |
[15] | Siebert S, Portmann F T, Doll P.Global patterns of cropland use intensity. Remote Sensing, 2010, 2: 1625-1643. |
[16] | Powers RF.On the sustainable productivity of planted forests. New Forests, 1999, 17: 263-306. |
[17] | Giller K, Beare M, Lavelle P, et al.Agricultural intensification, soil biodiversity and agro-ecosystem function. Applied Soil Ecology, 1997, 6: 3-16. |
[18] | Noble I R, Dirzo R.Forests as human-dominated ecosystems. Science, 1997, 277: 522-525. |
[19] | Turner B L, Doolittle W.The concept and measure of agricultural intensity. Professional Geographer, 1978, 30: 297-301. |
[20] | Burney J A, Davis S J, Lobell D B.Greenhouse gas mitigation by agricultural intensification. Proceedings of the national academy of sciences of the United States of America, 2010, 107: 12052-12057. |
[21] | Smith P, Gregory P J, van Vuuren D , et al. Competition for land. Philosophical Transactions of the Royal Society B-Biological Sciences, 2010, 365: 2941-2957. |
[22] | Dietrich J P, Schmitz C, Muller C, et al.Measuring agricultural land-use intensity: A global analysis using a model-assisted approach. Ecological Modelling, 2012, 232: 109-118. |
[23] | MacLeod CJ, Moller H. Intensification and diversification of New Zealand agriculture since 1960: An evaluation of current indicators of land use change. Agriculture Ecosystems & Environment, 2006, 115: 201-218. |
[24] | . Herzog F, Steiner B, Bailey D, et al.Assessing the intensity of temperate European agriculture at the landscape scale. European Journal of Agronomy, 2006, 24: 165-181. |
[25] | Hendrickx F, Maelfait J P, Van Wingerden W, et al.How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes. Journal of Applied Ecology, 2007, 44: 340-351. |
[26] | Le Fe'on V, Schermann-Legionnet A, Delettre Y, et al. Intensification of agriculture, landscape composition and wild bee communities: A large scale study in four European countries. Agriculture Ecosystems & Environment, 2010, 137: 143-150. |
[27] | Brookfield H C.Intensification and disintensification in Pacific agriculture: A theoretical approach. Asia Pacific Viewpoint, 1972, 13: 30-48. |
[28] | Brookfield H C, Hart D.Melanesia: A Geographical Interpretation of an Island World. London: Methuen; 1971. |
[29] | Brown P, Podolefsky A.Population density, agricultural intensity, land tenure, and group size in the New Guinea highlands. Ethnology, 1976, 15: 211-238. |
[30] | Stone G D, Netting R M C, Stone M P. Seasonally, labor scheduling, and agricultural intensification in the Nigerian Savanna. American Anthropologist, 1990, 92: 7-23. |
[31] | Temme A, Verburg P.Mapping and modelling of changes in agricultural intensity in Europe. Agriculture Ecosystems & Environment, 2010, 140: 46-56. |
[32] | Kleijn D, Kohler F, Ba´ldi A, et al.On the relationship between farmland biodiversity and land-use intensity in Europe. Proceedings of the Royal Society B-Biological Science, 2009, 276: 903-909. |
[33] | Duncker P H, Barreiro S, Hengeveld G, et al.Classification of forest management approaches: A new conceptual framework and its applicability to European forestry. Ecology and Society, 2012, 17: 51-62. |
[34] | FAO. Guidelines: Land Evaluation for Rainfed Agriculture. Soils Bulletin 52. Rome: Food and Agriculture Organization of the United Nations, 1983. |
[35] | FAO. Guidelines: Land Evaluation for Irrigated Agriculture. Soils Bulletin 55. Rome: Food and Agriculture Organization of the United Nations, 1985. |
[36] | FAO. World Agriculture: Towards 2015/2030. A FAO perspective//Bruinsma J. Food and Agricultural Organization of the United Nations, Rome, 2003. |
[37] | Naughton-treves L, Treves A, Chapman C, et al. Temporal patterns of crop-raiding by primates: Linking food availability in croplands and adjacent forest. Journal of Applied Ecology, 1998, 35: 596-606. |
[38] | Fischer G, Shah M, Tubiello F N, et al., 2005. Socio-economic and climate change impacts on agriculture: An integrated assessment, 1990-2080. Philosophical Transactions of the Royal Society B: Biological Sciences, 2003,360(1463): 2067-2083. |
[39] | Liu Xunhao.A study on the potential of multi-cropping index of China arable land. Crop Magazine, 1997, 3: 1-2. |
[刘巽浩. 论中国耕地种植指数 (复种) 的潜力. 作物杂志, 1997, (3): 1-2.] | |
[40] | Shi Juntong, Liu Mengjun, Li Jun.Multi-cropping and sustainable development in grain production of China. Agricultural Research in the Arid Areas, 1998, 16( 1): 51-57. |
[史俊通, 刘孟君, 李军. 论复种与我国粮食生产的可持续发展. 干旱地区农业研究, 1998, 16( 1): 51-57.] | |
[41] | Fan Jinlong, Wu Bingfang.A study on cropping index potential based on GIS. Journal of Remote Sensing, 2004, 8(6): 637-644. |
[范锦龙, 吴炳方. 基于GIS的复种指数潜力研究. 遥感学报, 2004, 8(6): 637-644.] | |
[42] | Odum E P.Fundamentals of Ecology. People's Education Press, 1981. |
[Odum E P.生态学基础.北京:人民教育出版社, 1981.] | |
[43] | Bouman B, Vankeulen H, Vanlaar H H, et al.The 'school of de wit' crop growth simulation models: A pedigree and historical overview. Agricultural Systems, 1996, 52(2/3): 171-198. |
[44] | de Wit C T. Photosynthesis in leaf canopies. Wageningen, 1965. |
[45] | Howell T, Cuenca R, Solomon K.Crop yield response: Management of farm irrigation systems. American Society of Agricultural Engineers, 1990: 93-122. |
[46] | Lobell D B, Cassman K G, Field C B.Crop yield gaps: Their importance, magnitudes, and causes. Annual Review of Environment and Resources, 2009, 34: 179. |
[47] | Licker R, Johnston M, Foley J A, et al.Mind the gap: how do climate and agricultural management explain the 'yield gap' of croplands around the world? Global Ecology and Biogeography, 2010, 19: 769-782. |
[48] | Neumann K, Verburg P H, Stehfest E, et al.The yield gap of global grain production: A spatial analysis. Agricultural Systems, 2010, 103: 316-326. |
[49] | Tscharntke T, Clough Y, Wangerb T C, et al.Global food security, biodiversity conservation and the future of agricultural intensification. Biological Conservation, 2012, 151: 53-59. |
[50] | Ye Jianping.An Introduction to Land Science. Renmin University Press of China, 2005: 69-71. |
[叶剑平. 土地科学导论. 北京: 中国人民大学出版社, 2005: 69-71.] | |
[51] | Hall R E, Jones J C.Why do some countries produce so much more output per worker than others? The Quarterly Journal of Economics, February 1999, 83-116. |
[52] | Allen B J.Boserup and Brookfield and the association between population density and agricultural intensity in Papua New Guinea. Asia Pacific Viewpoint, 2001, 42: 236-254. |
[53] | Hunt RC.Labor productivity and agricultural development: Boserup revisited. Human Ecology, 2000, 28: 251-277. |
[54] | Meyfroidt P, Lambin E F, Erb K H, et al.Globalization of land use: Distant drivers of land change and geographic displacement of land use. Current Opinion in Environmental Sustainability 2013, 5: 438-444. |
[55] | Johnston K J.The intensification of pre-industrial cereal agriculture in the tropics: Boserup, cultivation lengthening, and the Classic Maya. Journal of Anthropological Archaeology, 2003, 22 126-161. |
[56] | Stone G D.Theory of the square chicken: Advances in agricultural intensification theory. Asia Pacific Viewpoint, 2001, 42(2/3): 163-180. |
[57] | Shriar AJ.Determinants of agricultural intensity index "scores" in a frontier region: An analysis of data from northern Guatemala. Agriculture and Human Values, 2005, 22: 395-410. |
[58] | Keys E, McConnell W J. Global change and the intensification of agriculture in the tropics. Global Environmental Change, 2005, 15: 320-337. |
[59] | Matson P A, Parton W J, Power A G, et al.Agricultural intensification and ecosystem properties. Science, 1997, 277: 504-509. |
[60] | Tilman D.Forecasting agriculturally driven global environmental change. Science, 2001, 292: 281-284. |
[61] | Dubreuil A, Gaillard G, Muller-Wenk R.Key elements in a framework for land use impact assessment within LCA. International Journal of Life Cycle Assessment, 2007, 12: 5-15. |
[62] | Stoate C, Ba´ldi A, Beja P, et al.Ecological impacts of early 21st century agricultural change in Europe: A review. Journal of Environment Management, 2009, 91: 22-46. |
[63] | Foley J A, DeFries R, Asner G P , et al. Global consequences of land use. Science, 2005, 309: 570. |
[64] | Cordell D, Drangert J O, White S.The story of phosphorus: Global food security and food for thought. Global Environmental Change, 2009, 19: 292-305. |
[65] | Scott D, Cooper P, Lake S, et al.The effects of land use changes on streams and rivers in Mediterranean climates. Hydrobiologia, 2013, 719: 383-425. |
[66] | Sauer T, Havlík P, Schneider U A, et al.Agriculture and resource availability in a changing world: The role of irrigation. Water Resources Research, 2010, 46: 1-12. |
[67] | Moller H, MacLeod C J, Haggerty J. Intensification of New Zealand agriculture: Implications for biodiversity. New Zealand Journal of Agricultural Research, 2008, 51(3): 253-263. |
[68] | Hatfield J L, Cruse R M, Tomer M D.Convergence of agricultural intensification and climate change in the Midwestern United States: Implications for soil and water conservation. Marine and Freshwater Research, 2013, 64: 423-435. |
[69] | Lovett G M, Burns D A, Driscoll C T, et al.Who needs environmental monitoring? Frontiers in Ecology and Environment, 2007, 5: 253-260. |
[70] | Turner B L, Lambin E F, Reenberg A.The emergence of land change science for global environmental change and sustainability. Proceedings of the national academy of sciences of the United States of America, 2007, 104: 20666-20671. |
[72] | Hannah L, Lohse D, Hutchinson C, et al.A preliminary inventory of human disturbance of world ecosystems. Ambio, 1994, 23(4/5): 246-250. |
[71] | T scharntke T, Klein A M, Kruess A, et al. Landscape perspectives on agricultural intensification and biodiversity-ecosystem service management. Ecology Letters, 2005, 8: 857-874. |
[72] | Krausmann F, Haberl H, Erb K H, et al.Resource flows and land use in Austria 1950-2000: Using the MEFA framework to monitor society-nature interaction for sustainability. Land Use Policy, 2004, 21: 215-230. |
[73] | Doréa T, Makowski D, Malézieuxc E, et al.Facing up to the paradigm of ecological intensification in agronomy: Revisiting methods, concepts and knowledge. European Journal of Agronomy, 2011, 34: 197-210. |
[74] | Foley J A, Ramankutty N, Brauman K A, et al.Solutions for a cultivated planet. Nature, 2011, 478: 337-342. |
[75] | Erb K H.How a socio-ecological metabolism approach can help to advance our understanding of changes in land-use intensity. Ecological Economics, 2012, 76: 8-14. |
[76] | Bommarco R, Kleijn D, Potts S G.Ecological intensification: Harnessing ecosystem services for food security. Trends in Ecology and Evolution, 2013, 28(4): 230-238. |
[77] | Verburg P H, Mertz O, Erb K H, et al.Land system change and food security: Towards multi-scale land system solutions. Current Opinion in Environmental Sustainability, 2013, 5: 494-502. |
[78] | Kuemmerle T, Erb K, Meyfroidt P, et al.Challenges and opportunities in mapping land use intensity globally. Current Opinion in Environmental Sustainability, 2013, 5: 484-493. |
[79] | Erb K H, Gaube V, Krausmann F, et al.A comprehensive global 5 min resolution land-use dataset for the year 2000 consistent with national census data. Journal of Land Use Science, 2007, 2: 191-224. |
[80] | Zaks D P M, Kucharik C J. Data and monitoring needs for a more ecological agriculture. Environmental Research Letters, 2011, 6: 014017. |
[81] | Rudel T K, Schneider L, Uriarte M, et al.Agricultural intensification and changes in cultivated areas, 1970-2005. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106: 20675-20680. |
[82] | Grau R, Kuemmerle T, Macchi L.Beyond 'land sparing versus land sharing': Environmental heterogeneity, globalization and the balance between agricultural production and nature conservation. Current Opinion in Environmental Sustainability, 2013, 5: 477-483. |
[83] | Mandemaker M, Bakker M, Stoorvogel J.The role of governance in agricultural expansion and intensification: A global study of arable agriculture. Ecology and Society, 2011, 16: 8. |
[84] | Heaton E A, Schulte L A, Berti M.Managing a second-generation crop portfolio through sustainable intensification: Examples from the USA and the EU. Biofuels, Bioprod. Bioref, 2013, 7: 702-714. |
[85] | Haines-Young R, Potschin M, Kienast F.Indicators of ecosystem service potential at European scales: Mapping marginal changes and trade-offs. Ecological Indicators, 2012, 21: 39-53. |
[86] | Kumar P, Brondizio E, Gatzweiler F, et al.The economics of ecosystem services: From local analysis to national policies. Current Opinion in Environmental Sustainability, 2013, 5: 78-86. |
[87] | Seppelt R, Lautenbach S, Volk M.Identifying trade-offs between ecosystem services, land use, and biodiversity: A plea for combining scenario analysis and optimization on different spatial scales. Current Opinion in Environmental Sustainability, 2013, 5: 458-463. |
[88] | Garnett T, Appleby M C, Balmford A, et al.Sustainable intensification in agriculture: Premises and policies. Science, 2013, 341: 33-34. |
[89] | Albajes R, Cantero-Martı´ez C, Capell T, et al.Building bridges: An integrated strategy for sustainable food production throughout the value chain. Molecular Breeding, 2013, 32: 743-770. |
[90] | Tittonella P, Gillerb K E.When yield gaps are poverty traps: The paradigm of ecological intensification in African smallholder agriculture. Field Crops Research, 2013, 143: 76-90. |
[91] | Messerli P, Heinimann A, Giger M.From 'land grabbing' to sustainable investments in land: Potential contributions by land change science. Current Opinion in Environmental Sustainability, 2013, 5: 528-534. |
[92] | Caraveli H.A comparative analysis on intensification and extensification in mediterranean agriculture: Dilemmas for LFAs policy. Journal of Rural Studies, 2000, 16: 231-242. |
[1] | ZHANG Yongqiang, KONG Dongdong, ZHANG Xuanze, TIAN Jing, LI Congcong. Impacts of vegetation changes on global evapotranspiration in the period 2003-2017 [J]. Acta Geographica Sinica, 2021, 76(3): 584-594. |
[2] | SUN Yizhong, YANG Jing, SONG Shuying, ZHU Jie, DAI Junjie. Modeling of multilevel vector cellular automata and its simulation of land use change [J]. Acta Geographica Sinica, 2020, 75(10): 2164-2179. |
[3] | LIU Jiyuan,NING Jia,KUANG Wenhui,XU Xinliang,ZHANG Shuwen,YAN Changzhen,LI Rendong,WU Shixin,HU Yunfeng,DU Guoming,CHI Wenfeng,PAN Tao,NING Jing. Spatio-temporal patterns and characteristics of land-use change in China during 2010-2015 [J]. Acta Geographica Sinica, 2018, 73(5): 789-802. |
[4] | Lijuan ZHANG, Ziyan YAO, Shihao TANG, Xiaxiang LI, Tiantian HAO. Spatiotemporal characteristics and patterns of the global cultivated land since the 1980s [J]. Acta Geographica Sinica, 2017, 72(7): 1235-1247. |
[5] | Jiyuan LIU, Wenchao LIU, Wenhui KUANG, Jia NING. Remote Sensing-based Analysis of the Spatiotemporal Characteristics of Built-up area across China Based on the Plan for Major Function-oriented Zones [J]. Acta Geographica Sinica, 2016, 71(3): 335-369. |
[6] | LUO Ya, YANG Shengtian, LIU Xiaoyan, LIU Changming, SONG Wenlong, DONG Guotao, ZHAO Haigen, LOU Hezhen. Land use change in the reach from Hekouzhen to Tongguan of the Yellow River during 1998-2010 [J]. Acta Geographica Sinica, 2014, 69(1): 42-53. |
[7] | WU Linna, YANG Shengtian, LIU Xiaoyan, LUO Ya, ZHOU Xu, ZHAO Haigen. Response analysis of land use change to the degree of human activities in Beiluo River basin since 1976 [J]. Acta Geographica Sinica, 2014, 69(1): 54-63. |
[8] | LIU Jiyuan, KUANG Wenhui, ZHANG Zengxiang, XU Xinliang, QIN Yuanwei, NING Jia, ZHOU Wancun, ZHANG Shuwen, LI Rendong, YAN Changzhen, WU Shixin, SHI Xuezheng, JIANG Nan, YU Dongsheng, PAN Xianzhang, CHI Wenfeng. Spatiotemporal characteristics, patterns and causes of land use changes in China since the late 1980s [J]. Acta Geographica Sinica, 2014, 69(1): 3-14. |
[9] | ZHU Huiyi. Incentive of land use change:A case study on the variations of agricultural factor productivity in Xinjiang [J]. Acta Geographica Sinica, 2013, 68(8): 1029-1037. |
[10] | YANG Yitian, ZHENG Du, ZHANG Xueqin, LIU Yu. The spatial coupling of land use changes and its environmental effects on Hotan oasis during 1980-2010 [J]. Acta Geographica Sinica, 2013, 68(6): 813-824. |
[11] | MA Caihong, REN Zhiyuan, LI Xiaoyan. Land use change flow and its spatial agglomeration in the loess platform region [J]. Acta Geographica Sinica, 2013, 68(2): 257-267. |
[12] | PANG Jiangli, ZHANG Weiqing, HUANG Chunchang, ZHA Xiaochun, ZHANG Caiyun, CHANG Meirong, ZHU Meiling, DING Min. The Influence of Land Use Change on Soil Development and over the Loess Tablelands in the Northern Weihe River Basin, China [J]. Acta Geographica Sinica, 2010, 65(7): 789-800. |
[13] | DU Yun-Yan-1, Wang-Li-Jing-2, Ji-Min-2, Cao-Feng-1. A CBR Approach for Land Use Change Prediction [J]. Acta Geographica Sinica, 2009, 64(12): 1421-1429. |
[14] | LIU Ji-Yuan-1, Zhang-Ceng-Xiang-2, Xu-Xin-Liang-1, Kuang-Wen-Hui-1, Zhou-Mo-Cun-3, Zhang-Shu-Wen-4, LI Ren-Dong-5, Ya-Chang-Zhen-6, Xu-Dong-Sheng-7, Tun-Shi-Xin-8, Jiang-Na-9. Spatial Patterns and Driving Forces of Land Use Change in China in the Early 21st Century [J]. Acta Geographica Sinica, 2009, 64(12): 1411-1420. |
[15] | ZHU Huiyi. Land Use Advantage of Different Regions in China and Its Evolvement Mechanism [J]. Acta Geographica Sinica, 2007, 62(12): 1318-1326. |