Acta Geographica Sinica ›› 2014, Vol. 69 ›› Issue (7): 993-1001.doi: 10.11821/dlxb201407011
• Orginal Article • Previous Articles Next Articles
Xin ZHANG1,2, Yanhong WU2(), Xin ZHANG1(
)
Received:
2014-01-27
Revised:
2014-05-28
Online:
2014-07-20
Published:
2014-07-20
Supported by:
Xin ZHANG, Yanhong WU, Xin ZHANG. Water level variation of inland lakes on the south-central Tibetan Plateau in 1972-2012[J].Acta Geographica Sinica, 2014, 69(7): 993-1001.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Overviews of typical lakes in southwestern Tibetan Plateau
湖泊名称 | 年均气温 (oC) | 年均降水 (mm) | 集水面积 (km2) | 补给系数 | 补给方式 | 地貌特征 |
---|---|---|---|---|---|---|
普莫雍错 | 2.0~4.0 | 300 | 1323.9 | 4.2 | 湖面降水、冰雪融水 | 喜马拉雅山北坡山间盆地 |
扎日南木错 | 0 | 250 | 15433.2 | 15.5 | 湖面降水、地表径流 | 山间断裂带 |
玛旁雍错 | 2.0 | 168.6 | 4148.0 | 10.0 | 湖面降水、地表径流 | 南北高山相隔东西阶地分布 |
佩枯错 | 2.0 | 300~400 | 1980.0 | 6.9 | 湖面降水、冰雪融水 | 喜马拉雅山北坡断裂盆地 |
塔若错 | 0~0.2 | 200 | 6929.4 | 14.2 | 湖面降水、地表径流 | 冈底斯北麓山间盆地 |
Tab. 2
Typical lakes in the study area and remote sensing data for mapping lake areas and level
湖泊名称 | 位置 | 面积遥感数据 | 水位遥感数据 ICESat | |
---|---|---|---|---|
Landsat | MODIS | |||
普莫雍错 | 28°30′~28°38′N 90°13′~90°33′E | 1972-2011年 35景 | 2001-2012年 552景 | 2003-2009年 14个时段 |
扎日南木错 | 30°44′~31°05′N 85°20′~85°54′E | 1976-2012年 48景 | 2001-2012年 552景 | 2003-2009年 19时段 |
玛旁雍错 | 30°34′~30°47′N 81°22′~81°27′E | 1972-2012年 39景 | 2001-2012年 552景 | 2003-2009年 19个时段 |
佩枯错 | 28°46′~29°02′N 85°30′~85°42′E | 1976-2012年 27景 | 2001-2012年 552景 | 2003-2009年 18个时段 |
塔若错 | 31°03′~31°13′N 83°55′~84°20′E | 1976-2012年 40景 | 2001-2012年 552景 | 2003-2009年 12个时段 |
Tab. 3
The regression model of the extraction results from ICESat and MODIS of five lakes
湖泊名称 | 回归方程 | R2 | 显著性水平 |
---|---|---|---|
普莫雍错 | Y = ln(x)*661.509-3468.351 | 0.721 | α = 0.05 |
玛旁雍错 | Y = ln(x)*242,184-1051.499 | 0.765 | α = 0.05 |
塔若错 | Y = ln(x)*1429.233-8369.144 | 0.762 | α = 0.01 |
佩枯错 | Y = ln(x)*411.402-2035.593 | 0.670 | α = 0.05 |
扎日南木错 | Y = ln(x)*678.377-3682.608 | 0.492 | α = 0.05 |
Tab. 4
The regression model of the extraction results from MODIS and Landsatof five lakes
湖泊名称 | 回归方程 | R2 | 显著性水平 |
---|---|---|---|
普莫雍错 | Y = ln(x)*16.289-4918.349 | 0.433 | α = 0.05 |
玛旁雍错 | Y = ln(x)*19.660-4468.897 | 0.632 | α = 0.01 |
塔若错 | Y = ln(x)*30.442-4380.375 | 0.575 | α = 0.01 |
佩枯错 | Y = ln(x)*32.735-4396.264 | 0.481 | α = 0.01 |
扎日南木错 | Y = ln(x)*15.181-4508.691 | 0.656 | α = 0.01 |
Tab. 5
The changes of area and lake level of the five lakes during the periods of 1972-1999 and 2000-2012
湖泊名称 | 1972-1999年 | 2000-2012年 | ||||||
---|---|---|---|---|---|---|---|---|
面积 | 水位 | 面积 | 水位 | |||||
变化率 (km2/a) | 变化面积 (km2) | 变化率 (m/a) | 变化水位 (m) | 变化率 (km2/a) | 变化面积 (km2) | 变化率 (m/a) | 变化水位 (m) | |
普莫雍错 | 0.056 | 1.504 | 0.005 | 0.207 | 0.463 | 4.630 | 0.061 | 0.612 |
玛旁雍错 | -0.120 | -3.250 | -0.003 | -0.093 | -0.234 | -2.571 | -0.007 | -0.074 |
塔若错 | -0.322 | -7.42 | -0.003 | -0.061 | 1.004 | 11.046 | 0.200 | 2.195 |
佩枯错 | -0.221 | -5.085 | -0.039 | -0.894 | -0.206 | -2.470 | -0.038 | -0.457 |
扎日南木错 | -0.737 | -16.950 | -0.008 | -0.190 | 3.526 | 38.788 | 0.038 | 0.416 |
[1] | Lu C, Yu G, Xie G.Tibetan plateau serves as a water tower. Geoscience and Remote Sensing Symposium, 2005. IGARSS'05. Proceedings. 2005 IEEE International. IEEE, 2005: 3120-3123. |
[2] | Qiu J.China: The Third Pole. Nature News, 2008, 454(7203): 393-396. |
[3] | Yao Tandong, Zhu Liping .The response of environmental changes on Tibetan Plateau to global changes an adaptation strategy. Advances in Earth Science, 2006, 21(5): 459-464. |
[姚檀栋, 朱立平. 青藏高原环境变化对全球变化的响应及其适应对策. 地球科学进展, 2006, 21(5): 459-464.] | |
[4] | Wang Sumin, Dou Hongshen.Records of Lakes in China. Beijing: Science Press, 1998: 398-399. |
[王苏民, 窦鸿身. 中国湖泊志. 北京: 科学出版社, 1998: 398-399.] | |
[5] | Zhu L, Xie M, Wu Y.Quantitative analysis of lake area variations and the influence factors from 1971 to 2004 in the Nam Co basin of the Tibetan Plateau. Chinese Science Bulletin, 2010, 55(13): 1294-1303. |
[6] | Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Climate Change2007. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. |
[7] | Wu Yanhong, Zhu Liping,Ye Qinghua et al. The response of lake-glacier area change on climate variation in Namco Basin. Central Tibetan Plateau during the last three decades. Acta Geographica Sinica, 2007, 62(3): 301-311. |
[吴艳红, 朱立平, 叶庆华等. 纳木错流域近30年来湖泊-冰川变化对气候的响应. 地理学报, 2007, 62(3): 301-311.] | |
[8] | Meng Kai, Shi Xuhua, Wang Erqi et al. High-altitude salt lake elevation changes and glacial ablation in Central Tibet, 2000-2010. Chinese Science Bulletin, 2012, 57(7): 571-579. |
[孟恺, 石许华, 王二七等. 青藏高原中部色林错湖近10年来湖面急剧上涨与冰川消融. 科学通报, 2012, 57(7): 571-579.] | |
[9] | Liu J, Wang S, Yu S et al. Climate warming and growth of high-elevation inland lakes on the Tibetan Plateau. Global and Planetary Change, 2009, 67(3): 209-217. |
[10] | Lei Y, Yao T, Bird B W et al. Coherent lake growth on the central Tibetan Plateau since the 1970s: Characterization and attribution. Journal of Hydrology, 2013, 483: 61-67. |
[11] | Ye Q, Zhu L, Zheng H et al. Glacier and lake variations in the Yamzhog Yumco basin, southern Tibetan Plateau, from 1980 to 2000 using remote-sensing and GIS technologies. Journal of Glaciology, 2007, 53(183): 673-676. |
[12] | Yang K, Ye B, Zhou D et al. Response of hydrological cycle to recent climate changes in the Tibetan Plateau. Climatic change, 2011, 109(3/4): 517-534. |
[13] | Zhang B, Wu Y, Zhu L et al. Estimation and trend detection of water storage at Nam Co Lake, central Tibetan Plateau. Journal of Hydrology, 2011, 405(1): 161-170. |
[14] | Zhang G, Xie H, Duan Set al. Water level variation of Lake Qinghai from satellite and in situ measurements under climate change. Journal of Applied Remote Sensing, 2011, 5(1): 053532-053532-15. |
[15] | Zhang Guoqing, Yao Tandong, Kang Shichang et al. Water balance estimates of ten greatest lakes in China using ICESat and Landsat data. Chinese Science Bulletin, 2013, 58(26): 2664-2678. |
[张国庆, 姚檀栋, 康世昌等. 基于ICESat和Landsat的中国十大湖泊水量平衡估算. 科学通报, 2013, 58(26): 2664-2678.] | |
[16] | Zhang G, Xie H, Kang S et al. Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003-2009). Remote Sensing of Environment, 2011, 115(7): 1733-1742. |
[17] | Li Junli.Automatic extraction of Himalayan glacial lakes with remote sensing. Journal of Remote Sensing, 2011, 15(1): 29-43. |
[李均力. 喜马拉雅山地区冰湖信息的遥感自动化提取. 遥感学报, 2011, 15(1): 29-43.] | |
[18] | McFeeters S K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 1996, 17(7): 1425-1432. |
[19] | Xu Hanqiu.A study on information extraction of water body with the Modified Normalized Difference Water Index (MNDWI). Journal of Remote Sensing, 2005, 9(5): 589-595. |
[徐涵秋. 利用改进的归一化差异水体指数 (MNDWI) 提取水体信息的研究. 遥感学报, 2005, 9(5): 589-595.] | |
[20] | Yan Pei.A study on information extraction of water system in semi-arid regions with the Enhanced Water Index (EWI) and GIS based noise remove techniques. Remote Sensing Information, 2007, (6): 62-67. |
[闫霈. 利用增强型水体指数 (EWI) 和GIS去噪音技术提取半干旱地区水系信息的研究. 遥感信息, 2007, (6): 62-67.] | |
[21] | Ding Feng.A new method for fast information extraction of water bodies using remotely sensed data. Remote Sensing Technology and Application, 2009, 24(2): 167-171. |
[丁凤. 一种基于遥感数据快速提取水体信息的新方法. 遥感技术与应用, 2009, 24(2): 167-171.] | |
[22] | Chen Y, Yang K, He J et al. Improving land surface temperature modeling for dry land of China. Journal of Geophysical Research: Atmospheres (1984-2012), 2011: 116. |
[23] | He Jie, Yang Kun.China Meteorological Forcing Dataset. Cold and Arid Regions Science Data Center at Lanzhou, 2011. . |
[何杰, 阳坤. 中国区域高时空分辨率地面气象要素驱动数据集. 寒区旱区科学数据中心, 2011. .] | |
[24] | Chen X, Cui P, Li Y et al. Changes in glacial lakes and glaciers of post-1986 in the Poiqu River basin, Nyalam, Xizang (Tibet). Geomorphology, 2007, 88(3): 298-311. |
[25] | Shangguan D, Liu S, Ding Y et al. Thinning and retreat of Xiao Dongkemadi glacier, Tibetan Plateau, since 1993. Journal of Glaciology, 2008, 54: 949-951. |
[26] | Yao T, Pu J, Lu A et al. Recent glacial retreat and its impact on hydrological processes on the Tibetan Plateau, China, and surrounding regions. Arctic, Antarctic, and Alpine Research, 2007, 39(4): 642-650. |
[27] | Li X, Xu H, Sun Y et al. Lake-level change and water balance analysis at Lake Qinghai, west China during recent decades. Water Resources Management, 2007, 21(9): 1505-1516. |
[28] | Xie H, Ye J, Liu X et al. Warming and drying trends on the Tibetan Plateau (1971-2005). Theoretical and applied climatology, 2010, 101(3/4): 241-253. |
[29] | Kang S, Chen F, Ye Q et al. Glacier retreating dramatically on the Mt. Nyainqentanglha during the last 40 years. Journal of Glaciology and Geocryology, 2007, 29(6): 869-873. |
[30] | Liu X, Chen B.Climatic warming in the Tibetan Plateau during recent decades. International Journal of Climatology, 2000, 20(14): 1729-1742. |
[31] | Wu Shaohong, Yin Yunhe, Zheng Du.Climate changes in the Tibetan Plateau during the last three decades. Acta Geographica Sinica, 2005, 60(1): 3-11. |
[吴绍洪, 尹云鹤, 郑度. 青藏高原近30年气候变化趋势. 地理学报, 2005, 60(1): 3-11.] | |
[32] | Dai Yufeng, Gao Yang, Zhang Guoqing.Water volume change of the Peiku Co in the southern Tibetan Plateau and its response to climate change in 2003-2011. Journal of Glaciology and Geocryology, 2013, 35(3): 723-732. |
[戴玉凤, 高杨, 张国庆. 2003-2011年青藏高原佩枯错相对水量变化及其对气候变化的响应. 冰川冻土, 2013, 35(3): 723-732.] |
[1] | FENG Yuxue, LI Guangdong. Interaction between urbanization and eco-environment in Tibetan Plateau [J]. Acta Geographica Sinica, 2020, 75(7): 1386-1405. |
[2] | XU Chenchen, YE Huping, YUE Huanyin, TAN Xiang, LIAO Xiaohan. Iterative construction of UAV low-altitude air route network in an urbanized region: Theoretical system and technical roadmap [J]. Acta Geographica Sinica, 2020, 75(5): 917-930. |
[3] | YAO Yonghui, ZHANG Junyao, SUONAN Dongzhu. Compilation of 1∶50000 vegetation type map with remote sensing images based on mountain altitudinal belts of Taibai Mountain in the north-south transitional zone of China [J]. Acta Geographica Sinica, 2020, 75(3): 620-630. |
[4] | QI Wei, LIU Shenghe, ZHOU Liang. Regional differentiation of population in Tibetan Plateau: Insight from the "Hu Line" [J]. Acta Geographica Sinica, 2020, 75(2): 255-267. |
[5] | ZHOU Chenghu, SUN Jiulin, SU Fenzhen, YANG Xiaomei, PEI Tao, GE Yong, YANG Yaping, ZHANG An, LIAO Xiaohan, LU Feng, GAO Xing, FU Dongjie. Geographic information science development and technological application [J]. Acta Geographica Sinica, 2020, 75(12): 2593-2609. |
[6] | YU Shuchen, WANG Lunche, XIA Weiping, YU Deqing, LI Chang'an, HE Qiuhua. Spatio-temporal evolution of riparian lakes in Dongting Lake area since the late Qing Dynasty [J]. Acta Geographica Sinica, 2020, 75(11): 2346-2361. |
[7] | GAO Xing, KANG Shichang, LIU Qingsong, CHEN Pengfei, DUAN Zongqi. Magnetic characteristics of Qiangyong Co Lake sediments, southern Tibetan Plateau and its environmental significance during 1899-2011 [J]. Acta Geographica Sinica, 2020, 75(1): 68-81. |
[8] | FAN Keke, ZHANG Qiang, SUN Peng, SONG Changqing, YU Huiqian, ZHU Xiudi, SHEN Zexi. Effect of soil moisture variation on near-surface air temperature over the Tibetan Plateau [J]. Acta Geographica Sinica, 2020, 75(1): 82-97. |
[9] | ZHAO Guining, ZHANG Zhengyong, LIU Lin, XU Liping, WANG Puyu, LI Li, NING Shan. Changes of glacier mass balance in Manas river basin based on multi-source remote sensing data [J]. Acta Geographica Sinica, 2020, 75(1): 98-112. |
[10] | LIU Wenchao, LIU Jiyuan, KUANG Wenhui. Spatiotemporal patterns of soil protection effect of the Grain for Green Project in northern Shaanxi [J]. Acta Geographica Sinica, 2019, 74(9): 1835-1852. |
[11] | GUO Chao,MENG Hongwei,MA Yuzhen,LI Dandan,HU Caili,LIU Jierui,LUO Congwen,WANG Kai. Environmental variations recorded by chemical element in the sediments of Lake Yamzhog Yumco on the southern Tibetan Plateau over the past 2000 years [J]. Acta Geographica Sinica, 2019, 74(7): 1345-1362. |
[12] | WU Yijin,ZHAO Xingshuang,XI Yue,LIU Hui,LI Chang. Comprehensive evaluation and spatial-temporal changes of eco-environmental quality based on MODIS in Tibet during 2006-2016 [J]. Acta Geographica Sinica, 2019, 74(7): 1438-1449. |
[13] | LONG Yuannan,YAN Shixiong,JIANG Changbo,WU Changshan,LI Zhiwei,TANG Rong. A new method for extracting lake bathymetry using multi-temporal and multi-source remote sensing imagery: A case study of Dongting Lake [J]. Acta Geographica Sinica, 2019, 74(7): 1467-1481. |
[14] | Keke FAN, Qiang ZHANG, Peng SUN, Changqing SONG, Xiudi ZHU, Huiqian YU, Zexi SHEN. Variation, causes and future estimation of surface soil moisture on the Tibetan Plateau [J]. Acta Geographica Sinica, 2019, 74(3): 520-533. |
[15] | Chengde YANG, Xin WANG, Junfeng WEI, Qionghuan LIU, Anxin LU, Yong ZHANG, Zhiguang TANG. Chinese glacial lake inventory based on 3S technology method [J]. Acta Geographica Sinica, 2019, 74(3): 544-556. |