京津冀地区旅游经济增长的时空演化及影响因素
|
崔丹, 李沅曦, 吴殿廷
|
Spatiotemporal evolution and influencing factors of tourism economic growth in Beijing-Tianjin-Hebei region
|
CUI Dan, LI Yuanxi, WU Dianting
|
|
表4 京津冀地区旅游经济增长影响因素的空间面板回归模型及结果
|
Tab. 4 The spatial panel regression models and results of the factors affecting the tourism economic growth in Beijing-Tianjin-Hebei region
|
|
自变量 | 京津冀地区 | | 核心枢纽城市和旅游区域中心城市 | | 旅游节点城市 | (1)SDM | (2)SAC | (3)SEM | (1)SDM | (2)SAC | (3)SEM | (1)SDM | (2)SAC | (3)SEM | Pgdp | 0.2266 (0.77) | 0.3814* (1.52) | 0.3340 (1.37) | | 0.5389 (1.06) | 0.7288* (1.73) | 0.7400 (1.61) | | -0.1403 (-0.40) | 0.1677 (1.31) | 0.1882 (0.83) | Pop | -1.0871* (-1.90) | -0.8934* (-1.80) | -0.9026* (-1.87) | 0.1368 (0.11) | -0.5912 (-0.78) | -0.5901 (-0.68) | -0.6537 (-0.40) | 0.5180 (0.68) | -1.3309 (-1.14) | Lcost | -0.0146 (-0.05) | -0.1314 (-0.54) | -0.1227 (-0.54) | 0.0861 (0.15) | -0.1943 (-0.54) | -0.1899 (-0.46) | -0.0184 (-0.04) | -0.2095 (-1.51) | -0.0686 (-0.23) | Scenic | -0.0155 (-0.06) | -0.1345 (-0.56) | -0.1294 (-0.53) | -1.1437** (-1.93) | -0.6129 (-1.32) | -0.6625 (-1.30) | -0.2940 (-1.00) | -0.0426 (-0.53) | -0.2750 (-1.24) | Retn | -0.0531 (-0.17) | -0.0264 (-0.10) | -0.0768 (-0.30) | -0.0798 (-0.14) | -0.0332 (-0.08) | -0.0537 (-0.12) | -0.1288 (-0.96) | -0.0029 (-0.06) | 0.0099 (0.09) | Highr | 0.1415 (0.67) | 0.1813 (1.09) | 0.1527 (0.93) | 2.7637 (0.98) | 0.3273 (0.87) | 0.3972 (0.93) | -0.3139 (-0.82) | 0.0262 (0.26) | 0.0566 (0.25) | Road | 0.2024 (1.13) | 0.1111 (0.72) | 0.1131 (0.73) | -0.0355 (-0.13) | 0.0054 (0.02) | -0.0074 (-0.03) | 0.6284 (1.20) | 0.1692 (1.17) | 0.6546* (1.80) | Taxi | 1.3673 (1.40) | 0.1044 (0.13) | 0.3036 (0.40) | -0.5203 (-0.27) | -0.4035 (-0.28) | -0.2124 (-0.13) | 0.1149 (0.51) | 0.0120 (0.17) | 0.0843 (0.56) | Policy | 0.1664 (1.37) | 0.2105* (1.94) | 0.1971** (1.98) | 0.0105 (0.05) | 0.1501 (1.28) | 0.1675 (1.19) | 0.2689 (0.61) | 0.0228 (0.66) | 0.2246 (1.55) | Activity | 0.1458 (1.34) | 0.1891** (2.01) | 0.1471* (1.74) | 0.2124* (1.65) | 0.1708* (1.69) | 0.1924* (1.71) | 0.0152 (0.06) | 0.0229 (0.87) | 0.1043 (0.90) | PM | 0.4721** (2.40) | 0.5185*** (3.03) | 0.4422*** (2.85) | -0.0820 (-0.22) | 0.1244 (0.69) | 0.1063 (0.46) | 0.7385** (2.54) | 0.0069 (0.08) | 0.4962** (2.40) | W×Pgdp | -0.2697** (-2.08) | | | 0.7967 (1.33) | | | 0.6754*** (2.68) | | | W×Pop | 0.1949 (0.70) | | | -1.4459 (-1.57) | | | 1.8952 (1.48) | | | W×Lcost | 0.1704* (1.73) | | | -0.5659 (-1.24) | | | -0.6594** (-2.49) | | | W×Scenic | -0.1137 (-0.85) | | | 0.6074 (1.52) | | | 0.1499 (0.94) | | | W×Retn | 0.0821 (0.73) | | | -0.2508 (-0.80) | | | 0.0606 (0.73) | | | W×Highr | -0.1554 (-1.29) | | | -2.5294 (-0.90) | | | 0.0442 (0.15) | | | W×Road | 0.0399 (0.34) | | | -0.1227 (-0.53) | | | -0.2050 (-0.58) | | | W×Taxi | 0.0630 (0.18) | | | -0.7890 (-0.65) | | | -0.0096 (-0.08) | | | W×Policy | -0.0413 (-1.47) | | | 0.1147 (0.97) | | | -0.1126 (-0.66) | | | W×Activity | -0.0385 (-1.51) | | | -0.0133 (-0.16) | | | 0.0147 (0.14) | | | W×PM | -0.0558 (-0.94) | | | 0.2159 (1.01) | | | -0.5055*** (-3.07) | | | lambda | | 0.1573 (p=0.000) | 0.1203 (p=0.000) | | 0.1518 (p=0.078) | 0.2241 (p=0.000) | | -0.5743 (p=0.000) | 0.1715 (p=0.000) | rho | 0.2843 (p=0.000) | -0.1858 (p=0.000) | | 0.2221 (p=0.000) | 0.1373 (p=0.123) | | 0.1561 (p=0.000) | 0.3127 (p=0.000) | | R2 | 0.0764 | 0.2819 | 0.2668 | 0.2412 | 0.5944 | 0.5585 | 0.2628 | 0.1823 | 0.1593 | logL | -357.4596 | -278.5376 | -285.9555 | -114.5471 | -116.8932 | -117.7648 | -182.0591 | -179.2381 | -188.7497 | 观测量 | 247 | 247 | 247 | 95 | 95 | 95 | 152 | 152 | 152 | 城市数 | 13 | 13 | 13 | 5 | 5 | 5 | 8 | 8 | 8 |
|
|
|