基于分布式感知深度神经网络的高分辨率PM2.5值估算
刘基伟, 闵素芹, 金梦迪

High resolution PM2.5 estimation based on the distributed perception deep neural network model
LIU Jiwei, MIN Suqin, JIN Mengdi
表4 2018年京津冀鲁地区PM2.5预测的误差和时间开销
Tab. 4 Error and time cost of PM2.5 concentration prediction based on the Beijing-Tianjin-Hebei-Shandong region in 2018
DP-DNN MLP MI-NN LSTM GWR B-OLSR EN
地域迁移检验
MAE 16.6 17.2 18.5 22.1 29.1 19.2 21.3
MAE_std 1.1 1.2 1.6 0.9 41.0 0.4 0.6
RE(%) 41.80 44.7 44.6 76.1 141.1 56.6 67.0
RE_std(%) 4.90 4.72 5.0 13.7 141.7 4.3 5.7
MSE 691.5 744.2 901.2 1026.6 63086.4 788.6 1008.9
MSE_std 100.4 103.7 181.1 176.1 275336.9 49.0 81.0
RMSE 26.6 27.2 29.9 31.9 100.3 28.1 31.7
RMSE_std 1.9 1.9 2.9 2.6 230.3 0.9 1.3
时间预测检验
MAE 17.7 18.9 22.4 25.7 33.7 53.8 21.9
MAE_std 3.7 5.0 7.4 4.7 2.7 12.0 4.3
RE(%) 46.8 50.9 61.9 87.4 108.3 211.2 70.7
RE_std(%) 7.2 11.7 20.8 18.8 26.9 71.3 10.9
MSE 766.2 837.4 1126.8 1645.7 2228.3 3966.7 1038
MSE_std 355.6 446.7 789.5 712.1 532.6 1300 489.7
RMSE 26.9 27.4 31.9 39.6 46.9 62.1 31.3
RMSE_std 6.1 5.0 10.3 8.9 5.1 10.5 7.6
平均耗时(s) 4.2 3.1 3.3 26.4 3389.0 1.3 0.5