基于灰色关联模型对江苏省PM2.5浓度影响因素的分析
|
贺祥, 林振山, 刘会玉, 齐相贞
|
Analysis of the driving factors of PM2.5 in Jiangsu province based on grey correlation model
|
Xiang HE, Zhenshan LIN, Huiyu LIU, Xiangzhen QI
|
|
表4 江苏省13个省辖市PM2.5浓度与影响指标间的灰色关联系数矩阵 |
Tab. 4 Grey correlation coefficient matrix of PM2.5 of 13 provincial cities in Jiangsu province |
|
指标体系 | 南京市 | 无锡市 | 徐州市 | 常州市 | 苏州市 | 南通市 | 连云港市 | 淮安市 | 盐城市 | 扬州市 | 镇江市 | 泰州市 | 宿迁市 | 指标层 | | 指标因子 | 空气质量指标与气象要素 | X1 | 1.0000 | 0.8093 | 0.6380 | 0.8118 | 0.5046 | 0.8474 | 0.5368 | 0.6137 | 0.8674 | 0.7413 | 0.9793 | 0.6384 | 0.8828 | X2 | 0.3774 | 0.8095 | 0.5429 | 0.6108 | 0.5763 | 0.7643 | 0.4322 | 0.6804 | 1.0000 | 0.6773 | 0.6053 | 0.5127 | 0.6448 | X3 | 0.4288 | 0.7470 | 0.5428 | 0.7107 | 0.8259 | 0.7074 | 0.4202 | 0.9593 | 0.9133 | 0.6184 | 0.5989 | 0.6503 | 0.6473 | X4 | 0.9368 | 0.7547 | 0.8549 | 0.6917 | 0.4955 | 0.6599 | 0.7124 | 0.4344 | 0.8497 | 0.7477 | 0.7160 | 0.3588 | 0.6093 | X5 | 0.4312 | 0.6257 | 0.9539 | 0.6481 | 0.9049 | 0.9586 | 0.7937 | 0.4284 | 0.6299 | 0.7162 | 0.9587 | 0.8246 | 0.7918 | X6 | 0.5130 | 0.4639 | 0.5429 | 0.7006 | 0.6376 | 0.8272 | 0.4096 | 0.8935 | 0.9370 | 0.9917 | 0.5729 | 0.8318 | 0.8769 | X7 | 0.6773 | 0.7537 | 0.4636 | 0.7061 | 0.7285 | 0.3866 | 0.9756 | 0.6192 | 0.5076 | 0.5791 | 0.5747 | 0.5410 | 0.4247 | X8 | 0.6541 | 0.6167 | 0.7200 | 0.8161 | 0.4955 | 0.6279 | 0.6876 | 0.4621 | 0.8484 | 0.7549 | 0.7958 | 0.5006 | 0.4781 | X9 | 0.4469 | 0.6891 | 0.4634 | 0.4876 | 0.7983 | 0.5945 | 0.6950 | 0.8026 | 0.4522 | 0.7323 | 0.5425 | 0.5074 | 0.5939 | X10 | 0.4559 | 0.5499 | 0.5429 | 0.6577 | 0.5046 | 0.7919 | 0.6204 | 0.4983 | 0.3438 | 0.6876 | 0.6239 | 0.8461 | 0.8536 | PM2.5污染来源 | X11 | 1.0000 | 0.5378 | 0.6029 | 0.6745 | 0.7463 | 0.9207 | 0.6876 | 0.6105 | 0.7790 | 0.7008 | 0.4669 | 0.4114 | 0.4999 | X12 | 0.4557 | 0.5051 | 0.7284 | 0.5671 | 0.4955 | 0.9551 | 0.7699 | 0.4843 | 0.8107 | 0.6361 | 0.4808 | 0.3839 | 0.4247 | X13 | 1.0000 | 0.7283 | 0.8507 | 0.8613 | 0.8819 | 0.7267 | 0.9971 | 0.4886 | 0.7901 | 0.9270 | 0.6205 | 0.3682 | 0.4247 | X14 | 1.0000 | 0.7749 | 0.5590 | 0.7736 | 0.6272 | 0.9400 | 0.6876 | 0.4500 | 0.9585 | 0.5812 | 0.4775 | 0.3709 | 0.4314 | X15 | 0.5995 | 0.7719 | 0.6773 | 0.9214 | 0.4955 | 0.9534 | 0.6959 | 0.4679 | 1.0000 | 0.5694 | 0.5397 | 0.3784 | 0.4501 | X16 | 0.5597 | 0.7330 | 0.7129 | 0.5085 | 0.4955 | 0.9053 | 0.8600 | 0.4833 | 0.7980 | 0.5866 | 0.6169 | 0.4073 | 0.4247 | X17 | 0.5011 | 0.9063 | 0.6819 | 0.6551 | 0.4955 | 0.9111 | 0.7261 | 0.4937 | 0.8841 | 0.6374 | 0.5755 | 0.3795 | 0.4247 | X18 | 0.9493 | 0.9559 | 0.7221 | 0.7488 | 0.4955 | 0.7779 | 0.7917 | 0.4724 | 0.6395 | 0.5118 | 0.5213 | 0.3588 | 0.6598 | X19 | 0.4100 | 0.4855 | 0.5162 | 0.5576 | 0.6115 | 0.3866 | 0.7166 | 0.4762 | 0.7886 | 0.7224 | 0.4636 | 0.4679 | 0.4459 | 城市化与产业结构 | X20 | 0.3333 | 0.6726 | 0.6414 | 0.5446 | 0.6295 | 0.4005 | 0.4648 | 0.6237 | 0.3346 | 0.5155 | 0.5711 | 0.8246 | 0.6530 | X21 | 0.4450 | 0.7011 | 0.5540 | 0.8915 | 0.7427 | 0.7092 | 0.7061 | 0.8301 | 0.4229 | 0.5358 | 0.4636 | 0.8246 | 0.8163 | X22 | 0.3333 | 0.6507 | 0.6303 | 0.6742 | 0.9715 | 0.6706 | 0.3928 | 0.7782 | 0.3621 | 0.6430 | 0.7422 | 0.9319 | 0.7132 | X23 | 1.0000 | 0.7288 | 0.6250 | 0.5859 | 0.8579 | 0.9013 | 0.8202 | 0.4694 | 0.9382 | 0.5540 | 0.5023 | 0.3674 | 0.4247 | X24 | 0.4384 | 0.5422 | 0.5851 | 0.6982 | 0.7762 | 0.5903 | 0.7049 | 0.4652 | 0.8233 | 0.6546 | 0.6293 | 0.4251 | 0.4247 | X25 | 0.3333 | 0.8318 | 0.6750 | 0.8051 | 0.7567 | 0.4829 | 0.6161 | 0.6489 | 0.3462 | 0.6503 | 0.9876 | 0.8249 | 0.8100 | X26 | 0.6323 | 0.5838 | 0.9134 | 0.7155 | 0.4955 | 0.6230 | 0.8944 | 0.4633 | 0.6934 | 0.8047 | 0.7125 | 0.5489 | 0.4247 | X27 | 1.0000 | 0.7586 | 0.6880 | 0.8828 | 0.5391 | 0.9320 | 0.7188 | 0.4968 | 0.8292 | 0.8194 | 0.5391 | 0.4279 | 0.4247 |
|
|
|