%0 Journal Article %A ZHANG Jingjing %A ZHU Wenbo %A ZHU Lianqi %A LI Yanhong %T Multi-scale analysis of trade-off/synergy effects of forest ecosystem services in the Funiu Mountain Region %D 2020 %R 10.11821/dlxb202005007 %J Acta Geographica Sinica %P 975-988 %V 75 %N 5 %X

Forest ecosystem service trade-offs and synergies are important research topics for several disciplines. The multi-scale analysis of service trade-offs and synergies assists in the implementation of more effective forest resource management. Based on multi-source data including forest distribution, topography, NDVI, meteorology and soil conditions, key forest ecosystem services, including total forest volume, carbon storage, water yield, soil retention and habitat quality were mapped and evaluated for the Funiu Mountain Region through integrated deployment of the CASA model, the InVEST3.2 model and the ArcGIS10.2 software. The characteristics of trade-offs and synergies among different ecosystem services were then mapped and considered across multiple spatial scales (i.e., by region, north and south slopes, vertical belt) using the spatial overlay analysis method. The main results are as follows: (1) Mean forest volume is 49.26 m 3/hm 2, carbon density is 156.94 t/hm 2, water supply depth is 494.46 mm, the unit amount of soil retention is 955.4 t/hm 2, and the habitat quality index is 0.79. (2) The area of forests with good synergy is 28.79%, and the area of forests with poor synergy is 10.15%, while about 61.06% of forests show severe trade-offs and weak trade-offs. The overall benefits of forest ecosystem services in the study area are still low. In the future, bad synergy and severe trade-off areas should be the focus of forest resource management and efficiency regulation. (3) Synergy between ecosystem services is better for forest on south slope than that on north slope. Deciduous broad-leaved forest belt at moderate elevations on south slope in the mountains (SIII) has the highest synergies, while that at low elevations on north slope (NI) exhibits the lowest synergy levels.

%U https://www.geog.com.cn/EN/10.11821/dlxb202005007