Please wait a minute...
 
快速检索 图表检索 引用检索 高级检索
地理学报    2018, Vol. 73 Issue (9): 1728-1736     DOI: 10.11821/dlxb201809009
  地表过程 本期目录 | 过刊浏览 | 高级检索 |
金沙江金江街段河流阶地年代及对河谷水系演化历史的启示
董铭1(),苏怀1(),史正涛1,明庆忠2,何回丽3
1. 云南师范大学旅游与地理科学学院,昆明 650500
2. 云南财经大学旅游文化产业研究院,昆明 650221
3. 中国科学院昆明植物研究所,昆明 650201
The age of river terraces in the Jinjiangjie reach of the Jinsha River and its implications for valley and drainage evolution
DONG Ming1(),SU Huai1(),SHI Zhengtao1,MING Qingzhong2,HE Huili3
1. College of Tourism and Geography Sciences, Yunnan Normal University, Kunming 650500, China
2. Research Institute of Tourism and Culture Industry, Yunnan University of Finance and Economics, Kunming 650221, China
3. Kunming Institute of Botany, CAS, Kunming 650201, China
全文: PDF (3097 KB)   HTML
输出: BibTeX | EndNote (RIS)     
摘要 

100多年来,关于金沙江独特水系格局的形成历史一直是地学界争论的重要话题之一。多数学者认为,现代金沙江水系是古长江袭夺古红河上游发展过来的。红河海底扇5.5 Ma泥沙供给中断被认为与这一袭夺事件有关。然而,长期以来人们一直没有找到与这一时代相匹配的地貌证据。最近在金沙江金江街段找到了多达8级的河流阶地序列,ESR测年结果显示这些阶地的形成年代为1.07 Ma、0.70 Ma、0.65 Ma、0.51 Ma、0.47 Ma、0.44 Ma、0.30 Ma和0.18 Ma,结合GPS高程测量数据,推算最近1.0 Ma以来的河谷平均下切速率为147 mm/ka。以填充河谷地形为主要手段的古地形恢复结果(基于DEM数据)显示,古长江袭夺古红河上游形成现代金沙江水系发生在这一区域内海拔2000 m左右的古地形面解体之后,依照河谷平均下切速率外推,古地形面解体时代为5.5 Ma,即现代金沙江水系形成于5.5 Ma之后。我们的研究结果与红河海底扇的资料形成一个相互呼应的证据链,为重建现代金沙江水系格局形成历史提供重要依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董铭
苏怀
史正涛
明庆忠
何回丽
关键词 金沙江金江街阶地水系演化 
Abstract

The Jinsha River has attracted considerable attention for nearly a century due to its unusual drainage basin morphology. Most models describing its evolution suggest that the modern Jinsha River, draining the Tibetan Plateau margin, was once a tributary to a single, southward river system called "Paleo-Red River", which drained into the South China Sea and then its flow direction changed to east to join the Yangtze River due to river capture. The Red River submarine fan, considered to have been primarily fed by the Paleo-Red River system, suddenly disappeared at 5.5 Ma provides an important chronological constraint on this reorganization of drainage lines and reversal event. However, no geomorphic evidence has been found to agree with this hypothesized timeframe. Here, we present electron spin resonance (ESR) ages from eight terraces preserved in the Jinjiangjie reach of the Jinsha River together with their GPS altimetry data. Their ages from old to young are 1.07 Ma, 0.70 Ma, 0.65 Ma, 0.51 Ma, 0.47 Ma, 0.44 Ma, 0.30 Ma and 0.18 Ma, with a calculated average river incision rate of 147 mm/ka since 1.0 Ma. The paleo-topography, reconstructed by filling the deeply incised river gorges with digital elevation model (DEM) data, shows that the upper reach of the Paleo-Red River was captured by the Yangtze River and changed its flow direction eastward at the time of disruption of the 2000 m asl paleo-topographic surface in the Jinsha River drainage basin. The age of the paleo-topographic surface formation would be approximately 5.5 Ma using the average river incision rate extrapolation, suggesting that the present Jinsha River system was born after 5.5 Ma. This data support the chronological constraint from the Red River submarine fan, and hypothesized evolution of the Jinsha River.

Key wordsJinsha River    Jinjiangjie reach    terrace    drainage evolution
收稿日期: 2017-09-18      出版日期: 2018-09-19
基金资助:国家自然科学基金项目(41762014, 41462007, 41362010, 41001010);云南省应用基础研究计划项目(2013FZ047)
引用本文:   
董铭, 苏怀, 史正涛等 . 金沙江金江街段河流阶地年代及对河谷水系演化历史的启示[J]. 地理学报, 2018, 73(9): 1728-1736.
DONG Ming, SU Huai, SHI Zhengtao et al . The age of river terraces in the Jinjiangjie reach of the Jinsha River and its implications for valley and drainage evolution[J]. Acta Geographica Sinica, 2018, 73(9): 1728-1736.
链接本文:  
http://www.geog.com.cn/CN/10.11821/dlxb201809009      或      http://www.geog.com.cn/CN/Y2018/V73/I9/1728
Fig. 1  研究区及其各级阶地代表性剖面位置
Fig. 2  金沙江金江街段阶地序列综合剖面
阶地序列 测年材料 U(μg/g) Th(μg/g) K(%) 年剂量(mGy) 古剂量(Gy) 年龄(Ma)
T1 次生碳酸盐 1.64±0.20 4.76±0.40 1.41±0.23 2.739 497.1 0.181±0.015
T2 石英砂 3.02±0.30 9.50±0.70 1.35±0.13 4.993 1500.0 0.300±0.030
T3 次生碳酸盐 1.62±0.16 4.87±0.50 1.30±0.08 3.160 1400.0 0.443±0.040
T4 石英砂 3.77±0.35 11.97±1.10 1.57±0.15 3.886 1845.56 0.475±0.045
T5 石英砂 1.50±0.15 4.55±0.40 1.35±0.13 2.905 1493.30 0.514±0.050
T6 石英砂 1.70±0.20 5.45±0.50 1.24±0.15 4.192 2717.9 0.648±0.064
T7 石英砂 1.68±0.15 5.50±0.50 1.10±0.20 3.208 2268.6 0.707±0.070
T8 石英砂 1.64±0.15 4.76±0.40 1.63±0.15 4.772 5106.67 1.070±0.100
河漫滩 石英砂 0.70±0.05 2.11±0.20 1.13±0.10 1.99 25.8 0.012±0.001
Tab. 1  金沙江金江街段各级阶地的ESR年龄
Fig. 3  代表性样品附加剂量与ESR信号强度关系
Fig. 4  金沙江金江街段河流阶地高程与年代关系
Fig. 5  填充至不同海拔高度河谷恢复的古水系场景
[1] Yang Rong, Willett Sean D, Goren Liran.In situ low-relief landscape formation as a result of river network disruption. Nature, 2015, 520: 526-529.http://www.nature.com/articles/nature14354
DOI: 10.1038/nature14354     
[2] Devin McPhillips, Gregory D Hoke, Jing Liuzeng, et al. Dating the incision of the Yangtze River gorge at the First Bend using three-nuclide burial ages. Geophysical Research Letters, 2016, 43(1): 101-110.http://doi.wiley.com/10.1002/2015GL066780
[3] Kong Ping, Zheng Yong, Caffee Marc W.Provenance and time constraints on the formation of the first bend of the Yangtze River. Geochemistry Geophysics Geosystems, 2012, 13(6): 1-15.http://doi.wiley.com/10.1029/2011GC003955
[4] Wei Honghong, Wang Erchie, Wu Guoli, et al.No sedimentary records indicating southerly flow of the paleo-Upper Yangtze River from the First Bend in southeastern Tibet. Gondwana Research, 2016, 32: 93-104.http://linkinghub.elsevier.com/retrieve/pii/S1342937X15000532
[5] Su Huai, Ming Qingzhong, Pan Baotian, et al.The analysis and discussions on the chronological frame of Jinshajiang River valley-drainage. Journal of Mountain Science, 2013, 31(6): 685-692.
[苏怀, 明庆忠, 潘保田, . 金沙江河谷—水系发育的年代学框架分析与探讨. 山地学报, 2013, 31(6): 685-692.]http://d.wanfangdata.com.cn/Periodical/sdxb201306006
[6] Hu Zhenbo, Pan Baotian, Guo Lianyong, et al.Rapid fluvial incision and headward erosion by the Yellow River along the Jinshaan gorge during the past 1.2 Ma as a result of tectonic extension. Quaternary Science Reviews, 2016, 133: 1-14.https://linkinghub.elsevier.com/retrieve/pii/S0277379115301864
[7] Westaway Rob, Bridgland David R, White Tom S, et al.The use of uplift modelling in the reconstruction of drainage development and landscape evolution in the repeatedly glaciated Trent catchment, English Midlands, UK. Proceedings of the Geologists' Association, 2015, 126(4-5): 480-521.
[8] Zhang Yechun, Li Jijun, Zhu Junjie, et al.Studies on development of Jinshajiang River during Late Cenozoic. Yunnan Geographic Environment Research, 1998, 10(2): 43-48.
[张叶春, 李吉均, 朱俊杰, . 晚新生代金沙江形成时代与过程研究. 云南地理环境研究, 1998, 10(2): 43-48.]http://www.cnki.com.cn/Article/CJFDTotal-YNDL802.004.htm
[9] Xu Qinmian, Yang Dayuan, Ge Zhaoshuai, et al.Terraces along Sanduizi-Wudongde section of Jinsha River. Scientia Geographica Sinica, 2006, 26(5): 609-615.
[胥勤勉, 杨达源, 葛兆帅, . 金沙江三堆子—乌东德河段阶地研究. 地理科学, 2006, 26(5): 609-615.]http://d.wanfangdata.com.cn/Periodical/dlkx200605016
[10] Li Langping, Yang Dayuan, Huang Dian, et al.Drainage evolution of Qiaojia-Xinshizhen section of Jinsha River. Quaternary Sciences, 2009, 29(2): 327-333.
[李郎平, 杨达源, 黄典, . 金沙江巧家—新市镇河段的水系变迁. 第四纪研究, 2009, 29(2): 327-333.]
[11] Li Qiankun, Xu Zemin, Zhang Jiaming.The ancient landslide and dammed lake found in the Jinsha River near Zhaizicun, Yongsheng, Yunnan, China. Journal of Mountain Science, 2011, 29(6): 729-737.
[李乾坤, 徐则民, 张家明. 永胜金沙江寨子村古滑坡和古堰塞湖的发现. 山地学报, 2011, 29(6): 729-737.]
[12] Zhu Zhaoyu.The formation of river terraces and evolution of drainage system in the middle Yellow River. Acta Geographica Sinica, 1989, 44(4): 429-440.
[朱照宇. 黄河中游河流阶地的形成与水系演化. 地理学报, 1989, 44(4): 429-440.]http://www.cnki.com.cn/Article/CJFD1989-DLXB198904008.htm
[13] Pan Baotian, Su Huai, Hu Zhenbo, et al.Evaluating the role of climate and tectonics during non-steady incision of the Yellow River: Evidence from a 1.24 Ma terrace record near Lanzhou China. Quaternary Science Reviews, 2009, 28(27/28): 3281-3290.http://linkinghub.elsevier.com/retrieve/pii/S0277379109002959
[14] Kong Ping, Na Chunguang, Fink David, et al.Moraine dam related to late Quaternary glaciation in the Yulong Mountains, Southwest China, and impacts on the Jinsha River. Quaternary Science Reviews, 2009, 28(27-28): 3224-3235.http://linkinghub.elsevier.com/retrieve/pii/S0277379109002704
[15] Kong Ping, Darryl E Granger, Wu Fuyuan, et al.Cosmogenic nuclide burial ages and provenance of the Xigeda paleo-lake: Implications for evolution of the Middle Yangtze River. Earth and Planetary Science Letters, 2009, 278(1-2): 131-141.http://linkinghub.elsevier.com/retrieve/pii/S0012821X08007504
[16] Jakob Heyman, Arjen P Stroeven, Jonathan M Harbor, et al.Too young or too old: Evaluating cosmogenic exposure dating based on an analysis of compiled boulder exposure ages. Earth and Planetary Science Letters, 2011, 302(1-2): 71-80.http://linkinghub.elsevier.com/retrieve/pii/S0012821X10007478
[17] Gosse John C, Phillips Fred M.Terrestrial in situ cosmogenic nuclides: Theory and application. Quaternary Science Reviews, 2001, 20(14): 1475-1560.http://linkinghub.elsevier.com/retrieve/pii/S0277379100001712
[18] Gilles Rixhon, Rebecca M Briant, Stèphane Cordier, et al.Revealing the pace of river landscape evolution during the Quaternary: Recent developments in numerical dating methods. Quaternary Science Reviews, 2017, 166: 91-113.https://linkinghub.elsevier.com/retrieve/pii/S0277379116303006
[19] Hu Chunsheng, Xu Youpeng, Hu Chenqi, et al.Genesis of the Qingyijiang River on the northern fringe of Mt. Huangshan, China, based on a combined analysis of gravel fabrics and ESR dates. Quaternary International, 2016, 440: 137-146
[20] Li Desheng, Zhao Xingtian, Ding Zhaozhong, et al.A study of the clock zero of sedimentary loess for ESR dating. Applied Radiation and Isotopes, 1993, 44(1-2): 203-206.http://linkinghub.elsevier.com/retrieve/pii/0969804393902205
[21] Clark M K, Schoenbohm L M, Royden L H, et al. Surface uplift,tectonics,erosion of eastern Tibet from large-scale drainage patterns. Tectonics, 2004,23: TC1006. doi: 10.1029/2002TC001402.http://onlinelibrary.wiley.com/doi/10.1029/2002TC001402/full
[22] Ming Qingzhong, Shi Zhengtao, Zhang Hucai.The evolution of the landform and environment in the region of the three parallel rivers. Tropical Geography, 2006, 26(2): 119-122.
[明庆忠, 史正涛, 张虎才. 三江并流区地貌与环境演化研究. 热带地理, 2006, 26(2): 119-122.]
[23] Clark M K, Royden L H, Whipple K X, et al.Use of a regional, relict landscape to measure verticaldeformation of the eastern Tibetan Plateau. Journal of Geophysical Research, 2006, 111: F03002. doi: 10.1029/2005JF000294.
[24] Barbour G B.Physiographic history of the Yangtze. Geographical Journal, 1936, 87: 17-32.https://www.jstor.org/stable/1786198?origin=crossref
DOI: 10.2307/1786198     
[25] Devin McPhillips, Gregory D Hoke, Jing Liuzeng, et al. Dating the incision of the Yangtze River gorge at the First Bend using three-nuclide burial ages. Geophysical Research Letters, 2016 , 43(1): 101-110.http://doi.wiley.com/10.1002/2015GL066780
[26] Anne Socquet, Manuel Pubellier.Cenozoic deformation in western Yunnan (China-Myanmar border). Journal of Asian Earth Sciences, 2005, 24(4): 495-515.http://linkinghub.elsevier.com/retrieve/pii/S1367912004000999
[27] Tang Yuan, Liu Junlai, Tran My-Dung, et al.Timing of left-lateral shearing along the Ailao Shan-Red River shear zone: Constraints from zircon U-Pb ages from granitic rocks in the shear zone along the Ailao Shan Range, western Yunnan, China. International Journal of Earth Sciences, 2013, 102(3): 605-626.http://link.springer.com/10.1007/s00531-012-0831-y
[28] Westaway Rob.Active crustal deformation beyond the SE margin of the Tibetan Plateau: Constraintsfrom the evolution of fluvial systems. Global and Planetary Change, 2009, 68(4): 359-417.
[29] RoydenLeigh H, Burchfiel B Clark, King Robert W, et al. Surface deformation and lower crustal flow in eastern Tibet. Science, 1997, 276: 788-790.http://www.sciencemag.org/cgi/doi/10.1126/science.276.5313.788
DOI: 10.1126/science.276.5313.788      PMID: 9115202     
[30] Zeng Zhaoxuan.Geomorphological problems on river capture of Jinshajiang. Yunnan Geographic Environment Research, 1991, 3(2): 44-48.
[曾昭璇. 金沙江袭夺地形探讨. 云南地理环境研究, 1991, 3(2): 44-48.]
[31] Ren Xuemei, Yang Dayuan, Han Zhiyong.Terrace evidence of river system change in the upper reaches of Changjiang river. Quaternary Sciences, 2006, 26(3): 413-420.
[任雪梅, 杨达源, 韩志勇. 长江上游水系变迁的河流阶地证据. 第四纪研究, 2006, 26(3): 413-420.]
[32] Ren Meiè, Bao Haosheng, Han Tongchun, et al.Geomorphology of the Jinshajiang River capture in northwestern Yunnan. Acta Geographica Sinica, 1959, 26(2): 135-155.
[任美锷, 包浩生, 韩同春, . 云南西北部金沙江河谷地貌与河流袭夺问题. 地理学报, 1959, 25(2): 135-155.]http://www.cnki.com.cn/Article/CJFD1979-DLXB195902002.htm
[33] Wang Yingmin, Xu Qiang, Li Dong, et al.Late Miocene Red River submarine fan, northwestern South China Sea. Chinese Science Bulletin, 2011, 56(14): 1488-1494.http://link.springer.com/10.1007/s11434-011-4441-z
[1] 胡春生,刘邵晨,胡晨琦,曹乐,周迎秋. 黄山北麓青弋江发育研究[J]. 地理学报, 2018, 73(1): 138-151.
[2] 庞奖励,黄春长,周亚利,查小春,张玉柱,王蕾彬. 郧县盆地风成黄土—古土壤与汉江I级阶地形成年龄研究[J]. 地理学报, 2015, 70(1): 63-72.
[3] 陈艺鑫, 张梅, 李川川, 李英奎, 刘耕年. 末次冰盛期后格尔木河下切的时空变化及其构造意义[J]. 地理学报, 2011, 66(11): 1540-1550.
[4] 苏怀, 王均平, 潘保田, 明庆忠, 史正涛. 黄河三门峡至扣马段的阶地序列及成因[J]. 地理学报, 2008, 63(7): 744-750.
[5] 吕红华,李有利,南峰,司苏沛,刘运明,钱蟒,赵洪壮. 天山北麓河流阶地序列及形成年代[J]. 地理学报, 2008, 63(1): 65-74.
[6] 韩志勇,李徐生,任雪梅,胥勤勉,杨达源. 三峡库区长江阶地冲积物的年代测定[J]. 地理学报, 2006, 61(11): 1200-1207.
[7] 曾普胜. 滇西北老君山地区岩浆活动与 长江第一弯形成的关系[J]. 地理学报, 2002, 57(3): 319-326.
[8] 马保起, 李克, 吴卫民, 聂宗笙, 杨发, 郭文生, 何福利. 大青山河谷地貌特征及新构造意义[J]. 地理学报, 1999, 66(4): 327-334.
[9] 王治华. 金沙江下游的滑坡和泥石流[J]. 地理学报, 1999, 66(2): 142-149.
[10] 侯建军, 韩慕康, 张保增, 柴宝龙, 韩恒悦. 秦岭北麓断裂带晚第四纪活动的地貌表现[J]. 地理学报, 1995, 62(2): 138-146.
[11] 郑本兴, 马秋华. 贡嘎山地区全新世的冰川变化、气候变化与河谷阶地发育[J]. 地理学报, 1994, 61(6): 500-508.
[12] 刘国海, 韩慕康, 傅命佐, 李培英 . 大连半岛地貌、新构造运动与市区安全性 [J]. 地理学报, 1993, 60(3): 227-234.
[13] 谢明 . 河流水位变幅是影响阶地划分与新构造分析的重要因素——以长江三峡段为例 [J]. 地理学报, 1991, 58(3): 353-359.
[14] 朱照宇. 黄河中游河流阶地的形成与水系演化[J]. 地理学报, 1989, 56(4): 429-440.
[15] 杨达源. 长江三峡阶地的成因机制[J]. 地理学报, 1988, 55(2): 120-126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2013 《地理学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发