Please wait a minute...
 
快速检索 图表检索 引用检索 高级检索
地理学报    2018, Vol. 73 Issue (9): 1702-1713     DOI: 10.11821/dlxb201809007
  地表过程 本期目录 | 过刊浏览 | 高级检索 |
走廊南山河流纵剖面高海拔裂点的成因
陈苗(),胡小飞(),王维
兰州大学资源环境学院 西部环境教育部重点实验室,兰州 730000
The cause of high-altitude knickpoints on river longitudinal profiles along the Zoulang Nan Shan
CHEN Miao(),HU Xiaofei(),WANG Wei
Key Laboratory of Western China's Environmental Systems, College of Earth Environmental Sciences, Ministry of Education, Lanzhou University, Lanzhou 730000, China
全文: PDF (7112 KB)   HTML
输出: BibTeX | EndNote (RIS)     
摘要 

河流水力侵蚀物理模型表明基岩河道纵剖面在均衡状态时表现为平滑上凹的形态,其特征反映了构造、基岩抗侵蚀能力和气候的作用;然而自然界河道纵剖面多呈现以裂点为特征的不均衡形态,不均衡的剖面形态以及裂点的研究同样可以对外力作用的变化起到很好的指示作用。位于北祁连的走廊南山高海拔河道纵剖面普遍呈现不均衡形式且发育海拔较高的裂点。通过对裂点成因分析发现,这些裂点并不主要受控于岩性、气候、构造等因素,而反映了冰川作用遗留地形与河流地形的分界。这一结果说明在对河道纵剖面高海拔裂点进行分析时要考虑到古冰川遗留地形也会对现代河道纵剖面产生重要影响,为进一步认识和理解造山带地貌演化以及控制因素提供了思路。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈苗
胡小飞
王维
关键词 河道纵剖面陡峭指数裂点走廊南山冰川作用 
Abstract

The stream-power incision model shows that a bedrock channel longitudinal profile is characterized by a smooth, concave-up shape at the steady state, and its characteristics reflect the influences from external forces, such as tectonics, climate, and rock resistance. However, most of the natural rivers present a transient state characterized by knickpoints on longitudinal profiles, which can also infer the influences from external forces. Widespread knickpoints at high altitudes on river longitudinal profiles along the Zoulang Nan Shan (mountain), which is a part of northern Qilian Mountains, provide a particular case for studies on the factor affecting the disequilibrium profile. The analysis of the knickpoints indicates that the formation of the knickpoint at high altitudes is not influenced by lithology, climate and/or tectonics. By comparing the plaeo-glaicial evidences, we proposed that the high-altitude knickpoint reflects the boundary between residual glacier valleys and fluvial channels. The result suggests that we should pay more attention to the inheritance landform by ancient glaciation when analyzing the knickpoint located at high altitudes. This study would greatly increase the knowledge about the geomorphic evolution on high mountain ranges along orogenic belts.

Key wordsriver longitudinal profile    steepness index    knickpoint    Zoulang Nan Shan    glaciation
收稿日期: 2017-11-01      出版日期: 2018-09-19
基金资助:国家自然科学基金项目(41471009)
引用本文:   
陈苗, 胡小飞, 王维 . 走廊南山河流纵剖面高海拔裂点的成因[J]. 地理学报, 2018, 73(9): 1702-1713.
CHEN Miao, HU Xiaofei, WANG Wei . The cause of high-altitude knickpoints on river longitudinal profiles along the Zoulang Nan Shan[J]. Acta Geographica Sinica, 2018, 73(9): 1702-1713.
链接本文:  
http://www.geog.com.cn/CN/10.11821/dlxb201809007      或      http://www.geog.com.cn/CN/Y2018/V73/I9/1702
Fig. 1  研究区地形图(末次冰盛期ELA的分布源于施雅风等[25])
注:ELA,equilibrium line altitude,冰川物质平衡线高度;LGM,Last Glacial Maximum,末次冰盛期。
Fig. 2  标准化的河道陡峭指数(ksn)分布
Fig. 3  两条典型河道的纵剖面图(河道3和19位置参考图2)
Fig. 4  高海拔裂点上游流域面积与裂点海拔对比关系
注:图中编号的裂点表示摆浪河上游流域的河道,参考图2,编号61河流上游对应摆浪河14号冰川,摆浪河现代冰川和古冰川范围参考Zhou等[29]的研究。
Fig. 5  研究裂点上下游河段(a)标准化的陡峭指数分布与(b)凹度系数分布
Fig. 6  研究区岩性分布
Fig. 7  两条典型河道的裂点上下河段横断面特征(河流编号见图2)
Fig. 8  (a)研究区裂点位置与末次冰期冰川分布范围; (b)摆浪河上游典型河流纵剖面
注:ELA的分布源于施雅风等[25];摆浪河14号冰川新冰期和现代冰川末端参考Zhou等[29]的研究,河流编号见图2,其中61河流上游对应14号冰川。
[1] Howard A D, Kerby G.Channel changes in badlands. Geological Society of America Bulletin, 1983, 94: 739-752.https://pubs.geoscienceworld.org/gsabulletin/article/94/6/739-752/202874
[2] Howard A D, Dietrich W E, Seidl M A.Modeling fluvial erosion on regional to continental scales. Journal of Geophysical Research, 1994, 99: 13971-13986.http://doi.wiley.com/10.1029/94JB00744
DOI: 10.1029/94JB00744     
[3] Hack J T.Stream profile analysis and stream-gradient index. Geological Survey Professional Paper, 1973, 1: 421-429.http://www.researchgate.net/publication/311898307_Stream_profile_analysis_and_stream_gradient_index
[4] Flint J J.Stream gradient as a function of order, magnitude, and discharge. Water Resources Research, 1974, 10: 969-973.http://doi.wiley.com/10.1029/WR010i005p00969
[5] Whipple K X, Tucker G E.Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs. Journal of Geophysical Research, 1999, 104: 17661-17674.http://doi.wiley.com/10.1029/1999JB900120
[6] Duvall A R, Kirby E, Burbank D W.Tectonic and lithologic controls on bedrock channel profiles and processes in coastal California. Journal of Geophysical Research, 2004, 109: F03002. doi: 10.1029/2003JF000086.http://onlinelibrary.wiley.com/doi/10.1029/2003JF000086/full
[7] DiBiase R A, Whipple K X, Heimsath A M, et al. Landscape form and millennial erosion rates in the San Gabriel Mountains, CA. Earth and Planetary Science Letters, 2010, 289(1/2): 134-144.http://linkinghub.elsevier.com/retrieve/pii/S0012821X09006451
[8] Whipple K X.Bedrock rivers and the geomorphology of active orogens. Annual Review of Earth and Planetary Sciences, 2004, 32(1): 151-185.http://www.annualreviews.org/doi/10.1146/annurev.earth.32.101802.120356
[9] Kirby E, Whipple K X.Expression of active tectonics in erosional landscapes. Journal of Structural Geology, 2012, 44: 54-75.http://linkinghub.elsevier.com/retrieve/pii/S0191814112001691
[10] Snyder N P, Whipple K X, Tucker G E, et al.Landscape response to tectonic forcing: Digital elevation model analysis of stream profiles in the Mendocino triple junction region, northern California. Geological Society of America Bulletin, 2000, 112: 1250-1263.https://pubs.geoscienceworld.org/gsabulletin/article/112/8/1250-1263/183652
[11] Kirby E, Whipple K X.Quantifying differential rock-uplift rates via stream profile analysis. Geology, 2001, 29: 415-418.https://pubs.geoscienceworld.org/geology/article/29/5/415-418/192037
[12] Snyder N P, Whipple K X, Tucker G E, et al.Importance of a stochastic distribution of floods and erosion thresholds in the bedrock river incision problem. Journal of Geophysical Research, 2003, 108. doi: 10.1029/2001JB001655.
[13] Wang Yizhou, Zhang Huiping, Zheng Dewen, et al.How a stationary knickpoint is sustained: New insights into the formation of the deep Yarlung Tsangpo Gorge. Geomorphology, 2017, 285: 28-43.https://linkinghub.elsevier.com/retrieve/pii/S0169555X16307620
[14] Cyr A J, Granger D E, Olivetti V, et al.Distinguishing between tectonic and lithologic controls on bedrock channel longitudinal profiles using cosmogenic 10Be erosion rates and channel steepness index. Geomorphology, 2014, 209: 27-38.http://linkinghub.elsevier.com/retrieve/pii/S0169555X13006107
[15] Whittaker A C.How do landscapes record tectonics and climate? Lithosphere, 2012, 4(2): 160-164.http://pubs.geoscienceworld.org/lithosphere/article/4/2/160/145621/How-do-landscapes-record-tectonics-and-climate
DOI: 10.1130/RF.L003.1     
[16] Zhang Huiping, Zhang Peizheng, Wu Qinglong, et al.Characteristics of the Huanghe River longitudinal profiles around Xunhua-Guide area (NE Tibet) and their tectonic significance. Quaternary Sciences, 2008, 28(2): 299-309.
[张会平, 张培震, 吴庆龙, . 循化—贵德地区黄河水系河流纵剖面形态特征及其构造意义. 第四纪研究, 2008, 28(2): 299-309.]
[17] Wallace R E.Degradation of the Hebgen Lake fault scaps of 1959. Geology, 1980, 8: 225-229.https://pubs.geoscienceworld.org/geology/article/8/5/225-229/195652
[18] MacGregor K R, Anderson R S, Anderson S P, et al. Numerical simulations of glacial-valley longitudinal profile evolution. Geology, 2000, 28(11): 1031-1034.https://pubs.geoscienceworld.org/geology/article/28/11/1031-1034/190991
[19] Anderson R S, Molnar P, Kellser M A.Features of glacial valley profiles simply explained. Journal of Geophysical Research, 2006, 111: F01004. doi: 10.1029/2005JF000344.http://onlinelibrary.wiley.com/doi/10.1029/2005JF000344/pdf
[20] Brocklehurst S H, Whipple K X.Response of glacial landscapes to spatial variations in rock uplift rate. Journal of Geophysical Research, 2007, 112: F02035. doi: 10.1029/2006JF000667.http://onlinelibrary.wiley.com/doi/10.1029/2006JF000667/full
[21] Brardinoni F, Hassan M A.Glacially-induced organization of channel-reach morphology in mountain streams. Journal of Geophysical Research, 2007, 112: F03013. doi: 10.1029/ 2006JF000741.http://onlinelibrary.wiley.com/doi/10.1029/2006JF000741/full
[22] Hu Xiaofei, Pan Baotian, Kirby E, et al.Spatial differences in rock uplift rates inferred from channel steepness indices along the northern flank of the Qilian Mountain, northeast Tibetan Plateau. Chinese Science Bulletin, 2010, 23: 2329-2338.
[胡小飞, 潘保田, Kirby E, . 河道陡峭指数所反映的祁连山北翼抬升速率的东西差异. 科学通报, 2010, 23: 2329-2338.]
[23] Liu Xingwang, Yuan Daoyang, Zheng Wenjun, et al.Research on Late Quaternary slip rates of the Fodongmiao-Hongyazi Fault at the north margin of Qilianshan Mountains. Chinese Journal of Geology, 2012, 47(1): 51-61.
[刘兴旺, 袁道阳, 郑文俊, . 祁连山北缘佛洞庙—红崖子断裂晚第四纪滑动速率研究. 地质科学, 2012, 47(1): 51-61.]
[24] Hetzel R., Tao M, Stokes S, et al. Late Pleistocene/Holocene slip rate of the Zhangye thrust (Qilian Shan, China) and implications for the active growth of the northeastern Tibetan Plateau. Tectonics, 2004, 23: TC6006. doi: 10.1029/2004TC001653.
[25] Shi Yafeng, Zhao Jingdong, Wang Jie, et al.New Understanding of Quaternary Glaciations in China. Shanghai: Shanghai Popular Science Press, 2011.
[施雅风, 赵井东, 王杰, . 中国第四纪冰川新论. 上海: 上海科学普及出版社, 2011.]
[26] Liu Zechun.Quaternary glaciations in Qilian Mountains. Journal of Nanjing University, 1963, 2: 33-48.
[刘泽纯. 祁连山的第四纪与冰川作用. 南京大学学报, 1963, 2: 33-53.]
[27] Guo Pengfei.Study on Quaternary glaciations in the middle section of Qilian Mountains. Glaciology and Geocryology, 1984, 6(1): 6-15.
[郭鹏飞. 祁连山中东段地区第四纪冰期探讨. 冰川冻土, 1980, 6(1): 6-15.]
[28] Zhao Jingdong, Zhou Shangzhe, Cui Jianxin et al. ESR chronology of Bailanghe valley and new understanding of Qilianshan Mountain's Quaternary glaciation. Journal of Mountain Science, 2001, 19(6): 481-488.
[赵井东, 周尚哲, 崔建新, . 摆浪河流域的ESR年代学与祁连山第四纪冰期新认识. 山地学报, 2001, 19(6): 481-488.]
[29] Zhou Shangzhe, Li Jijun, Zhang Shiqiang. Quaternary glaciation of the Bailang River Valley, Qilian Shan. Quaternary International, 2002, 97/98: 103-110.http://linkinghub.elsevier.com/retrieve/pii/S1040618202000551
[30] Owee L A, Spencer J Q, MA H, et al.Timing of Late Quaternary glaciation along the southwestern slopes of the Qilian Shan. Boreas, 2003, 32: 281-291.http://doi.wiley.com/10.1080/03009480310001632
[31] Yang Wei, Zhou Shangzhe, Narama C, et al.The stage-division and environmental significance of moraine in Qiyi Glacier, Qilian Shan. Journal of Lanzhou University (Natural Science), 2006, 42(6): 12-15.
[杨威, 周尚哲, Narama C, . 祁连山中段新冰期以来的冰川序列及环境变化. 兰州大学学报(自然科学报), 2006, 42(6): 12-15.]http://d.wanfangdata.com.cn/Periodical/lzdxxb200606003
[32] Yuan Daoyang, Zhang Peizhen, Liu Baichi, et al.Geometrical imagery and tectonic transformation of Late Quaternary active tectonics in northeastern margin of Qinghai-Xizang Plateau. Acta Geologica Sinica, 2004, 78(2): 270-278.
[袁道阳, 张培震, 刘百篪, . 青藏高原东北缘晚第四纪活动构造的几何图像与构造转换. 地质学报, 2004, 78(2): 270-278.]
[33] Wang Zongtai, Liu Chaohai.Development conditions and distribution features and regional divisions of present glaciers in Qilian Mountains. Acta Geographica Sinica, 1983, 38(2): 141-153.
[王宗太, 刘潮海. 祁连山区现代冰川发育条件、分布特征及区划. 地理学报, 1983, 38(2): 141-153.]
[34] Chengdu Institute of Geology and Mineral Resources, CAGS. The Geology Map of Tibet Plateau and Adjacent Areas. Beijing: Geological Publishing House, 2007: 3-41.
[中国地质科学院成都地质矿产研究所. 青藏高原及邻区地质图(1∶1500000). 北京: 地质出版社, 2007: 3-41.]
[35] Yan Yeqing, Hu Yajie.Analyse on temporal and spatial distribution characteristic of rainfall in Gansu Province. Gansu Science and Technology, 2011, 27(1): 63-66.
[闫业庆, 胡雅杰. 甘肃降水量时空分布特征浅析. 甘肃科技, 2011, 27(1): 63-66.]http://d.wanfangdata.com.cn/Periodical/gskj201101023
[36] Sklar L, Dietrich W E.River longitudinal profiles and bedrock incision models: Stream power and the influence of sediment supply//Tinkler K J, Wohl E E. Rivers Over Rock: Fluvial Processes in Bedrock Channels. Geophysical Monograph Series. Washington DC: AGU Press, 1998, 107: 237-260.
[37] Wobus C W, Whipple K X, Kirby E, et al.Tectonics from topography: Procedure, promise, and pitfalls. Geological Society of America Bulletin, 2006, 398: 55-74.http://www.researchgate.net/publication/228740545_Tectonics_from_topography_Procedures_promise_and_pitfalls
[38] Cyr A J, Granger D E, Olivetti V, et al.Quantifying rock uplift rates using channel steepness and cosmogenic nuclide-determined erosion rates: Examples from northern and southern Italy. Lithosphere, 2010, 2(3): 188-198.http://pubs.geoscienceworld.org/lithosphere/article/2/3/188/145553/Quantifying-rock-uplift-rates-using-channel
DOI: 10.1130/L96.1     
[39] Olivetti V, Cyr A J, Molin P, et al. Uplift history of the Sila Massif, southern Italy, deciphered from cosmogenic 10Be erosion rates and river longitudinal profile analysis. Tectonics, 2012, 31(3): TC3007. doi: 10.1029/2011TC003037.
[40] Scott R M, Sak P B, Kirby E, et al. Neogene rejuvenation of central Appalachian topography: Evidence for differential rock uplift from stream profiles and erosion rates.Earth and Planetary Science Letters, 2013, 369-370: 1-12.
[41] Molin P, Corti G.Topography, river network and recent fault activity at the margins of the Central Main Ethiopian Rift (East Africa). Tectonophysics, 2015, 664: 67-82.http://linkinghub.elsevier.com/retrieve/pii/S0040195115004801
[42] Jiang Wenliang, Han Zhujun, Zhang Jingfa, et al.Stream profile analysis, tectonic geomorphology and neotectonic activity of the Damxung-Yangbajain rift in the south Tibetan Plateau. Earth Surface Processes and Landforms, 2016, 41(10): 1312-1326.http://doi.wiley.com/10.1002/esp.3899
DOI: 10.1002/esp.3899     
[43] Crosby B T, Whipple K X.Knickpoint initiation and distribution within fluvial networks: 236 waterfalls in the Waipaoa River, North Island, New Zealand. Geomorphology, 2006, 82: 16-38.http://linkinghub.elsevier.com/retrieve/pii/S0169555X06001231
[44] Berlin M M, Anderson R. Modeling of knickpoint retreat on the Roan Plateau, western Colorado. Journal of Geophysical Research, 2007, 112: F03S06. doi: 10.1029/2006JF000553.http://onlinelibrary.wiley.com/doi/10.1029/2006JF000553/full
[45] Whipple K X, DiBiase R A, Crosby B T. Bedrock rivers//Shroder John F. Treatise on Geomorphology, 9. San Diego: Academic Press, 2013: 550-573.
[46] Kirby E, Whipple K X, Tang Wengqing, et al.Distribution of active rock uplift along the eastern margin of the Tibetan Plateau: Inferences from bedrock channel longitudinal profiles. Journal of Geophysical Research, 2003, 108(B4): 2217.doi: 10.1029/2001JB000861.
[47] Whipple K X.The influence of climate on the tectonic evolution of mountain belts. Nature Geoscience, 2009, 2: 97-104.http://www.nature.com/articles/ngeo413
DOI: 10.1038/ngeo413     
[48] Davis W M. The Mission Range. The Geographical Review, 1916, 2(4): 267-288.https://www.jstor.org/stable/207356?origin=crossref
DOI: 10.2307/207356     
[49] Crosby W O.Certain aspects of glacial erosion. Geological Society of America Bulletin, 1928, 39(4): 1171-1181.https://pubs.geoscienceworld.org/gsabulletin/article/39/4/1171-1181/3177
[50] Lewis W V.Valley steps and glacial valley erosion. Transaction and Papers. Institute of British Geographers, 1947, 13: 19-44.
[1] 贾彬彬,周亚利,赵军. 新疆阿尔泰山东段冰碛物光释光测年研究[J]. 地理学报, 2018, 73(5): 957-972.
[2] 王乃瑞,韩志勇,李徐生,陈刚,王先彦,鹿化煜. 河流纵剖面陡峭指数对庐山构造抬升的指示[J]. 地理学报, 2015, 70(9): 1516-1525.
[3] 张威, 董应巍, 于治龙, 贺明月. 气候和地貌对晚第四纪冰川发育差异性的影响[J]. 地理学报, 2013, 68(7): 909-920.
[4] 金德生, 陈浩, 郭庆伍. 河道纵剖面分形-非线性形态特征[J]. 地理学报, 1997, 64(2): 154-162.
[5] 康尔泗. 冰川作用流域能水平衡的径流模拟计算[J]. 地理学报, 1995, 62(6): 552-561.
[6] 汤懋苍. 祁连山区降水的地理分布特征[J]. 地理学报, 1985, 52(4): 323-332.
[7] 张英骏, 莫仲达. 黄果树瀑布成因初探[J]. 地理学报, 1982, 49(3): 303-316.
[8] 张祥松. 喀喇昆仑公路沿线冰川的近期进退变化[J]. 地理学报, 1980, 47(2): 149-160.
[9] 崔之久. 青藏高原(及其邻近山地)冰川侵蚀地貌发育的基本特征与影响因素[J]. 地理学报, 1980, 47(2): 137-148.
[10] 学英. 英国地理教学与地貌研究[J]. 地理学报, 1980, 47(1): 93-95.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2013 《地理学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发