地理学报 ›› 2011, Vol. 66 ›› Issue (3): 416-426.doi: 10.11821/xb201103014
龙瀛1,2, 沈振江3, 毛其智1
收稿日期:
2010-01-31
修回日期:
2010-07-25
出版日期:
2011-03-20
发布日期:
2011-03-20
作者简介:
龙瀛(1980-), 男, 博士研究生, 高级工程师, 中国地理学会会员(S110007674M), 主要研究方向为规划支持系统和城市系统微观模拟。E-mail: longying1980@gmail.com
基金资助:
国家自然科学基金项目(51078213); 国家“十一五”科技支撑计划项目(2006BAJ14B08)
LONG Ying1,2, SHEN Zhenjiang3, MAO Qizhi1
Received:
2010-01-31
Revised:
2010-07-25
Online:
2011-03-20
Published:
2011-03-20
Supported by:
National Natural Science Foundation of China, No.51078213; Technical Supporting Programs Funded by Ministry of Science & Technology of China, No.2006BAJ14B08
摘要: 目前自上而下的城市系统宏观模拟并不能解决城市这一复杂系统中出现的部分问题,城市系统微观模拟(如多主体系统MAS) 已经成为城市系统模拟的新思路,其主要是基于个体数据(如个人、家庭、公司或建筑物) 开展的。国际国内这方面的应用都受到个体样本稀缺的限制。微观模拟所需要的个体样本数据是原有的统计制度所不能适应的,尤其是在中国,个体样本在统计公报或年鉴中不公开,仅可通过典型调查来补充。本文旨在探索稀疏数据环境下构建城市系统微观模拟的个体样本数据的新方法。该方法基于已有的多源统计数据、典型调查数据以及个体的通用规则,反演出个体样本的属性信息和空间分布,进而可以以GIS图层的形式直接作为微观模拟的数据基础。通过本方法获取的样本,能够符合已有的统计资料,并遵照了样本的基本特征,可以作为现有数据条件下的微观模拟模型的数据输入。同时该方法的应用简单,统计意义上的准确度高,适合我国统计制度下的微观模拟模型的构建。
龙瀛, 沈振江, 毛其智. 城市系统微观模拟中的个体数据获取新方法[J]. 地理学报, 2011, 66(3): 416-426.
LONG Ying, SHEN Zhenjiang, MAO Qizhi. Retrieving Individual Attributes from Aggregate Dataset for Urban Micro-simulation: A Preliminary Exploration[J]. Acta Geographica Sinica, 2011, 66(3): 416-426.
[1] Orcutt G. A new type of socio-economic system. Review of Economics and Statistics, 1957, 58: 773-797.[2] Ballas D, Clarke G. GIS and microsimulation for local labour market analysis. Computers, Environment and Urban Systems, 2000, 24: 305-330.[3] Hanaoka K, Clarke G P. Spatial microsimulation modelling for retail market analysis at the small-area level. Computers, Environment and Urban Systems, 2007, 31: 162-187.[4] Wu B M, Birkin M H, Rees P H. A spatial microsimulation model with student agents. Computers, Environment and Urban Systems, 2008, 32: 440-453.[5] Parker D C, Manson S M, Janssen M A et al. Multi-agent systems for the simulation of land use and land cover change: A review. Annals of the Association of American Geographers, 2003, 93: 314-337.[6] Pudney S, Sutherland H. How reliable are microsimulation results? An analysis of the role of sampling error in a U.K. tax-benefit model. Journal of Public Economics, 1994, 53: 327-365.[7] van Sonsbeek J M, Gradus R H J M. A microsimulation analysis of the 2006 regime change in the Dutch disability scheme. Economic Modelling, 2006, 23: 427-456.[8] Crooks A, Castle C, Batty M. Key challenges in agent-based modeling for geo-spatial simulation. Computers, Environment and Urban Systems, 2008, 32: 417-430.[9] Crooks A. Constructing and implementing an agent-based model of residential segregation through vector GIS. CASA Working Paper No.133. Centre for Advanced Spatial Analysis, University College London, 2008.[10] Miller J E, Hunt D J, Abraham J E et al. Microsimulating urban systems. Computers, Environment and Urban Systems, 2004, 28: 9-44.[11] Deadman P J, Robinson D T, Moran E et al. Colonist household decision making and land-use change in the Amazon rainforest: An agent-based simulation" Environment and Planning B: Planning and Design, 2004, 31: 693-709.[12] Zhang Honghui, Zeng Yongnian, Jin Xiaobin et al. Urban land expansion model based on multi-agent system and application. Acta Geographica Sinica, 2008, 63(8): 869-881. [张鸿辉, 曾永年, 金晓斌等. 多智能体城市土地扩张及其应用. 地理学报, 2008, 63(8): 869-881.][13] Tao Haiyan, Li Xia, Chen Xiaoxiang. Simulation for evolvement of residential spatial patterns in real scene based on multi-agent. Acta Geographica Sinica, 2009, 64(6): 665-676. [陶海燕, 黎夏, 陈晓翔. 基于多智能体的居住空间格局的真实场景模拟. 地理学报, 2009, 64(6): 665-676.][14] Shen Z, Yao X, Kawakami M et al. Simulating the impact on downtown of large-scale shopping centre location: Integrating GIS dataset and MAS platform as a case study in Kanazawa city//Proceedings of the Conference of Computers in Urban Planning and Urban Management (Hong Kong), 2009.[15] Brown D G, Robinson D T. Effects of heterogeneity in residential preferences on an agent-based model of urban sprawl. Ecology and Society, 2006, 11(1): 46. URL: http://www.ecologyandsociety.org/vol11/iss1/art46/[16] Langford M, Unwin D J. Generating and mapping population density surfaces within a geographical information system. The Cartographic Journal, 1994, 31: 21-26.[17] Jiang Dong, Wang Naibin, Liu Honghui. Method of pixelizing population data. Acta Geographica Sinica, 2002, 57 (suppl.): 70-75. [江东, 王乃斌, 刘红辉. 人口数据空间化的处理方法. 地理学报, 2002, 57(增刊): 70-75.][18] Mennis J. Generating surface models of population using dasymetric mapping. The Professional Geographer, 2003, 55 (1): 31-42.[19] Wang Xuemei, Li Xin, Ma Mingguo. Advance and case analysis in population spatial distribution based on remote sensing and GIS. Remote Sensing Technology and Application, 2004, 19(5): 320-327. [王雪梅, 李新, 马明国. 基于和GIS的人口数据空间化研究进展及案例分析. 遥感技术与应用, 2004, 19(5): 320-327.][20] Liao Y, Wang J, Meng B et al. Integration of GP and GA for mapping population distribution. International Journal of Geographical Information Science, 2010, 24: 47-67.[21] Robinson D T, Brown D. Evaluating the effects of land-use development policies on ex-urban forest cover: An integrated agent-based GIS approach. International Journal of Geographical Information Science, 2009, 23(9): 1211-1232.[22] Crooks A. Exploring cities using agent-based models and GIS. CASA Working Paper No.109. Centre for Advanced Spatial Analysis, University College London, 2006.[23] Li X, Liu X. Embedding sustainable development strategies in agent-based models for use as a planning tool. International Journal of Geographical Information Science, 2008, 22: 21-45.[24] Li X, Liu X. Defining agents' behaviors to simulate complex residential development using multicriteria evaluation. Journal of Environmental Management, 2007, 85: 1063-1075.[25] Hynes S, Farrelly N, Murphy E et al. Modelling habitat conservation and participation in agri-environmental schemes: A spatial microsimulation approach. Ecological Economics, 2008, 66: 258-269.[26] Beijing Fifth Population Census Office, Beijing Statistical Bureau. Beijing Population Census of 2000. Beijing: China Statistics Press, 2002. [北京市第五次人口普查办公室, 北京市统计局. 北京市2000 年人口普查资料. 北京: 中国统版社, 2002.] |
[1] | 张学波, 宋金平, 于伟, 王振波. 基于感知的北京居民职住空间关系生成机理[J]. 地理学报, 2021, 76(2): 383-397. |
[2] | 高晓路, 吴丹贤, 颜秉秋. 北京城市老年贫困人口识别与空间分布[J]. 地理学报, 2020, 75(8): 1557-1571. |
[3] | 张杰, 史培军, 杨静, 龚道溢. 北京地区景观城市化进程对暴雨过程的影响——以“7·21”暴雨为例[J]. 地理学报, 2020, 75(1): 113-125. |
[4] | 隆院男,闫世雄,蒋昌波,吴长山,李志威,唐蓉. 基于多源遥感影像的洞庭湖地形提取方法[J]. 地理学报, 2019, 74(7): 1467-1481. |
[5] | 乔治, 黄宁钰, 徐新良, 孙宗耀, 吴晨, 杨俊. 2003-2017年北京市地表热力景观时空分异特征及演变规律[J]. 地理学报, 2019, 74(3): 475-489. |
[6] | 张延吉,秦波,朱春武. 北京城市建成环境对犯罪行为和居住安全感的影响[J]. 地理学报, 2019, 74(2): 238-252. |
[7] | 王亮,刘慧. 基于PS-DR-DP理论模型的区域资源环境承载力综合评价[J]. 地理学报, 2019, 74(2): 340-352. |
[8] | 周麟,田莉,张臻,李薇. 基于空间句法视角的民国以来北京老城街道网络演变[J]. 地理学报, 2018, 73(8): 1433-1448. |
[9] | 赵美风,戚伟,刘盛和. 北京市流动人口聚居区空间分异及形成机理[J]. 地理学报, 2018, 73(8): 1494-1512. |
[10] | 秦静,李郎平,唐鸣镝,孙岩,宋昕芮. 基于地理标记照片的北京市入境旅游流空间特征[J]. 地理学报, 2018, 73(8): 1556-1570. |
[11] | 冯健,钟奕纯. 北京社会空间重构(2000-2010)[J]. 地理学报, 2018, 73(4): 711-737. |
[12] | 杨斯棋,邢潇月,董卫华,李帅朋,詹智成,王全意,杨鹏,张奕. 北京市甲型H1N1流感对气象因子的时空响应[J]. 地理学报, 2018, 73(3): 460-473. |
[13] | 韩会然,杨成凤,宋金平. 北京批发企业空间格局演化与区位选择因素[J]. 地理学报, 2018, 73(2): 219-231. |
[14] | 申犁帆,王烨,张纯,姜冬睿,李赫. 轨道站点合理步行可达范围建成环境与轨道通勤的关系研究——以北京市44个轨道站点为例[J]. 地理学报, 2018, 73(12): 2423-2439. |
[15] | 王鹏飞, 王瑞璠. 行动者网络理论与农村空间商品化——以北京市麻峪房村乡村旅游为例[J]. 地理学报, 2017, 72(8): 1408-1418. |